Humanities
  • ISSN: 2155-7993
  • Journal of Modern Education Review


Artificial Intelligence and Large Language Models in Higher Education: Results of A Systematic Review


Thomas Leitgeb1, M. Leitgeb2 
(1. Centre FPR Digital Competence and STEAM, University College of Teacher Education Burgenland, Eisenstadt, Austria;

2. Virtual University College, University College of Teacher Education Burgenland, Eisenstadt, Austria)


Abstract: Artificial Intelligence (AI), and in particular Large Language Models (LLMs), has gained significant importance in the education sector in recent years. These technologies offer a variety of applications, such as personalizing learning, improving the efficiency of administrative processes, and introducing innovative teaching methods. Despite the numerous possibilities, there is a research gap regarding the concrete design and implementation of AI systems in higher education, considering both technical efficiency and ethical standards. The present work addresses this gap through a systematic literature review in accordance with the PRISMA guidelines, evaluating 111 relevant studies from the Web of Science, Scopus, and Google Scholar databases.

The analysis shows that AI and LLMs offer significant advantages for higher education, such as the creation of individualized learning paths and the automation of assessment processes. At the same time, the study identifies significant challenges, including privacy issues, algorithmic biases, and the lack of explainability of complex models. Ethical implications such as fairness and equity are also critically examined. To address these challenges, concrete recommendations for educational institutions are developed. These include the development of proprietary, internally hosted AI systems for better data control, the promotion of interdisciplinary collaboration, comprehensive training programs for educators, and the establishment of governance structures and ethical guidelines.

The findings emphasize the need for an integrated perspective that considers both technical and ethical aspects in order to harness the full potential of AI in education in a responsible way. This work provides practical guidelines for the effective and ethical implementation of AI technologies in higher education, thereby contributing to improving the quality of education while ensuring data protection and fairness.

Key words: artificial intelligence, AI in education, systematic literature review, AI applications in higher education, explainable AI


References:

Abimbola, C., C. A., Chisom, O. N., & Adeniyi, I. S. (2024). “Integrating AI in education: Opportunities, challenges, and ethical considerations”, Magna Scientia Advanced Research and Reviews, Vol. 10, No. 2, pp. 006-013, doi: https://doi.org/10.30574/msarr.2024.10.2.0039.

Akpan, I. J., Kobara, Y. M., Owolabi, J., Akpan, A. A., & Offodile, O. F. (2024). “Conversational and generative artificial intelligence and human-chatbot interaction in education and research”, International Transactions in Operational Research, doi: https://doi.org/10.1111/itor.13522.

Al Darayseh, A. (2023). “Acceptance of artificial intelligence in teaching science: Science teachers’ perspective”, Computers and Education: Artificial Intelligence, Vol. 4, p. 100132, doi: https://doi.org/10.1016/j.caeai.2023.100132.

Akinwalere, S. N., & Ivanov, V. (2022). “Artificial intelligence in higher education: Challenges and opportunities”, Border CrossingVol. 12, No. 1, pp. 1-15, doi: https://doi.org/10.33182/bc.v12i1.2015.

Ali, M. H., Kainat, M., Maqsood, M., Fernandez, S. F., Ali, S., & Ahmad, M. (2024). “Chatbots in academic literacy exploring AI in education”, in: Ş. Demir & M. Demir (Eds.), Enhancing Higher Education and Research With OpenAI Models, IGI Global, pp. 37-59, doi: https://doi.org/10.4018/979-8-3693-1666-5.ch002.

Atlas, S. (2023). “ChatGPT for higher education and professional development: A guide to conversational AI”, available online at: https://digitalcommons.uri.edu/cba_facpubs/548.

Baker, R. S., & Hawn, A. (2022). “Algorithmic bias in education”, International Journal of Artificial Intelligence in Education, Vol. 31, No. 4, pp. 595-626, doi: https://doi.org/10.1007/s40593-021-00285-9.

Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). “Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis”, Sustainability, Vol. 15, p. 12983, doi: https://doi.org/10.3390/su151712983.

Baı, J. Y. H., Zawackı-Rıchter, O., & Muskens, W. (2024). “Re-examining the future prospects of artificial intelligence in education in light of the GDPR and ChatGPT”, Turkish Online Journal of Distance Education, Vol. 25, No. 1, pp. 20–32, doi: https://doi.org/10.17718/tojde.1248901.

Bañeres, D., Rodríguez-González, M. E., Guerrero-Roldán, A. E., & Cortadas, P. (2023). “An early warning system to identify and intervene online dropout learners”, International Journal of Educational Technology in Higher Education, Vol. 20, No. 1, pp. 1–25, doi: http://dx.doi.org/10.1186/s41239-022-00371-5.

Bhattacharya, A., Stumpf, S., & Verbert, K. (2024). “Representation debiasing of generated data involving domain experts”, Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, doi: https://doi.org/10.48550/arXiv.2407.09485.

Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., Pham, P., Chong, S. W., & Siemens, G. (2024). “A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour”, International Journal of Educational Technology in Higher Education, Vol. 21, No. 4, doi: https://doi.org/10.1007/s10639-022-10925-9.

Binns, R. (2018). “Fairness in machine learning: Lessons from political philosophy”, in: Proceedings of the Conference on Fairness, Accountability, and Transparency, http://dx.doi.org/10.48550/arXiv.1712.03586, pp. 149–159.

Brandão, A., Pedro, L., & Zagalo, N. (June 2024). “Teacher professional development for a future with generative artificial intelligence — An integrative literature review”, Digital Education Review, Vol. 45, pp. 151–157, doi: https://doi.org/10.1344/der.2024.45.151-157.

Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N., Patzlaff, H., Harmouch, H., & Naumann, F. (2022). “The effects of data quality on machine learning performance”, doi: https://doi.org/10.48550/arxiv.2207.14529.

Castillo-Martínez, I. M., Flores-Bueno, D., Gómez-Puente, S. M., & Vite-León, V. O. (2024). “AI in higher education: A systematic literature review”, Front. Educ., Vol. 9, p. 1391485, doi: 10.3389/feduc.2024.1391485.

Chaudhary, G. (2024). “Unveiling the black box: Bringing algorithmic transparency to AI”, Masaryk University Journal of Law and Technology, Vol. 18, No. 1, pp. 93–122, doi: https://doi.org/10.5817/mujlt2024-1-4.

Chaudhry, I. S., Sarwary, S. A. M., El Refae, G. A., & Chabchoub, H. (2023). “Time to revisit existing student’s performance evaluation approach in higher education sector in a new era of ChatGPT — A case study”, Cogent Education, Vol. 10, No. 1, p. 2210461, doi: http://dx.doi.org/10.1080/2331186X.2023.2210461.

Chinta, S. V., Wang, Z., Yin, Z., Hoang, N., Gonzalez, M., Le Quy, T., & Zhang, W. (2024). “FairAIED: Navigating fairness, bias, and ethics in educational AI applications”, doi: https://doi.org/10.48550/arxiv.2407.18745.

Chen, L., Chen, P., & Lin, Z. (2020). “Artificial intelligence in education: A review”, IEEE Access, Vol. 8, pp. 75264–75278, doi: http://dx.doi.org/10.1109/ACCESS.2020.2988510.

Chu, H. C., Hwang, G. H., Tu, Y. F., & Yang, K. H. (2022). “Roles and research trends of artificial intelligence in higher education: A systematic review of the top 50 most-cited articles”,  Australasian Journal of Educational Technology,  Vol. 38, No. 3, pp. 22–42, doi: https://doi.org/10.14742/ajet.7526.

Crawford, J., Cowling, M., & Allen, K. A. (2023). “Leadership is needed for ethical ChatGPT: Character, assessment, and learning using artificial intelligence (AI)”, Journal of University Teaching and Learning Practice, Vol. 20, No. 2, p. 2, available online at: https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3180&context=jutlp.

Crompton, H., & Burke, D. (2023). “Artificial intelligence in higher education: The state of the field”, International Journal of Educational Technology in Higher Education, Vol. 20, p. 22, doi: https://doi.org/10.1186/s41239-023-00392-8.

Da Cruz, R. C., Juliano, R. C., Monteiro Souza, F. C., & Correa Souza, A. C. (2023, Mai). “A Score approach to identify the risk of students dropout: An experiment with information systems course”, in: Proceedings of the XIX Brazilian Symposium on Information Systems, pp. S. 120-127, doi: https://doi.org/10.1145/3592813.3592896.

D’ascenzo, F., Rocchi, A., Iandolo, F., & Vito, P. (2024). “Evolutionary impacts of artificial intelligence in healthcare managerial literature”, Sustainability Futures, Vol. 7, p. 100198, doi: https://doi.org/10.1016/j.sftr.2024.100198.

Daun, M., & Brings, J. (2023). “How ChatGPT will change software engineering education”, in: Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education, Vol. 1, pp. 110-116, doi: http://dx.doi.org/10.1145/3587102.3588815.

Dave, T., Athaluri, S. A., & Singh, S. (2023). “ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations”, Frontiers in Artificial Intelligence, Vol. 6, p. 1169595, doi: https://doi.org/10.3389/frai.2023.1169595.

Deng, X, and Yu, Z. (2023). “A meta-analysis and systematic review of the effect of chatbot technology use in sustainable education”, Sustainability, Vol. 15, No. 4, p. 2940, doi: https://doi.org/10.3390/su15042940.

Drachsler, H., & Greller, W. (2016). “Privacy and analytics: It’s a delicate issue”, in: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, pp. 89-98, https://doi.org/10.1145/2883851.2883893.

Dogru, T., Line, N., Mody, M., Hanks, L., Abbott, J. A., & Acikgoz, F. et al. (n.d.). “Generative artificial intelligence in the hospitality and tourism industry: Developing a framework for future research”, Journal of Hospitality and Tourism Research, doi: https://doi.org/10.1177/10963480231188663.

Duran, V. (2024). “Analyzing teacher candidates’ arguments on AI integration in education via different chatbots”, doi: https://doi.org/10.1344/der.2024.45.68-83.

Estévez-Ayres, I., Callejo, P., Hombrados-Herrera, M. Á., Alario-Hoyos, C., & Delgado Kloos, C. (2024). “Evaluation of LLM tools for feedback generation in a course on concurrent programming”, doi: https://doi.org/10.1007/s40593-024-00406-0.

European Union (2024). “Regulation (EU) 2024/1689 of the European Parliament and of the Council of 12 July 2024 laying down harmonized rules on artificial intelligence (Artificial Intelligence Act) and amending certain Union legislative acts”, Official Journal of the European Union, L 1689, available online at: https://eur-lex.europa.eu.

Farhat, F., Silva, E. S., Hassani, H., Madsen, D., Sohail, S. S., Himeur, Y., Alam, M. A., & Zafar, A. (2023). “The scholarly footprint of ChatGPT: A bibliometric analysis of the early outbreak phase”, Frontiers in Artificial Intelligence, Vol. 6, p. 1270749, doi: https://doi.org/10.3389/frai.2023.1270749.

Farooqi, M. T. K., Amanat, I., & Awan, S. M. (2024). “Ethical considerations and challenges in the integration of artificial intelligence in education: A systematic review”, Journal of Excellence in Management Sciences,  Vol. 3, No. 4, pp. 35–50, https://doi.org/10.69565/jems.v3i4.314.

Floridi, L., & Cowls, J. (2021). “A unified framework of five principles for AI in society”, in: Floridi, L. (Eds.), Ethics, Governance, and Policies in Artificial Intelligence, Philosophical Studies Series, Vol. 144, Springer, Cham., doi: https://doi.org/10.1007/978-3-030-81907-1_2.

Fryer, L. K., Nakao, K., & Thompson, A. (2019). “Chatbot learning partners: Connecting learning experiences, interest and competence”, Computers in Human Behavior, Vol. 93, pp. 279–289, doi: https://doi.org/10.1016/j.chb.2018.12.023.

Gal, E., Kaplan-Rakowski, R., Amzalag, M., Shaked, N., Zaguri, Y., Kohen-Vacs, D., Barak-Medina, E., & Kurtz, G. (2024). “Strategies for integrating generative AI into higher education: Navigating challenges and leveraging opportunities”, Education Sciences, Vol. 14, p. 503, doi: https://doi.org/10.3390/educsci14050503.

Gonzalez-Nucamendi, A., Noguez, J., Neri, L., Robledo-Rella, V., & García-Castelán, R. M. G. (2023). “Predictive analytics study to determine undergraduate students at risk of dropout”, Frontiers in Education, Vol. 8, p. 1244686, doi: https://doi.org/10.3389/feduc.2023.1244686.

Go, M. B., Junior, R. A. G., Velos, S. P., Dayupay, J. P., Cababat, F. G., Baird, J. C. C., & Quiñanola, H. (2023). “A data mining approach to classifying e-learning satisfaction of higher education students: A Philippine case”, International Journal of Innovation and Learning, Vol. 33, No. 3, pp. 314–329, available online at: https://EconPapers.repec.org/RePEc:ids:ijilea:v:33:y:2023:i:3:p:314-329.

Gowda, S. N., Hao, X., Li, G., Sevilla-Lara, L., & Gowda, S. N. (2023). “Watt for what: Rethinking deep learning’s energy-performance relationship”, doi: https://doi.org/10.48550/arXiv.2310.06522.

Gough, D., Oliver, S., & Thomas, J. (2017). An Introduction to Systematic Reviews (2nd ed.), Los Angeles: SAGE, available online at: https://uk.sagepub.com/sites/default/files/upm-assets/81596_book_item_81596.pdf.

Goel, P. K. (2024). “AI for energy efficiency and conservation”, in: B. Riswandi, B. Singh, C. Kaunert, & K. Vig (Eds.), AI Applications for Clean Energy and Sustainability, IGI Global, pp. 32–49, doi: https://doi.org/10.4018/979-8-3693-6567-0.ch003.

Hanaba, S., Mysechko, O., & Bloshchynskyi, I. (2023). “Changing the educational paradigm in the post-pandemic world: Possibilities and risks of artificial intelligence using”, Broad Research in Artificial Intelligence and Neuroscience, Vol. 11, No. (2Sup1), doi: https://doi.org/10.70594/brain/11.2Sup1/93.

Hidalgo, I., Fernández-de-Vega, F., Ceberio, J., Garnica, Ó., Velasco, J. M., Cortés, J. C., Villanueva, R., & Díaz, J. (December 7, 2023). “Sustainable artificial intelligence systems: An energy efficiency approach”, Universidad Complutense de Madrid, doi: https://doi.org/10.36227/techrxiv.24610899.v1.

Hinojo-Lucena, F. J., Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). “Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature”, Education Sciences, Vol. 9, No. 1, p. 51, doi:  https://doi.org/10.3390/educsci9010051.

Holmes, W. (2019). “Artificial intelligence in education”, in: Tatnall, A. (Ed.), Encyclopedia of Education and Information Technologies, Springer, Cham, doi: https://doi.org/10.1007/978-3-319-60013-0_107-1.

Holmes, W., Bialik, M., & Fadel, C. (2019). “Artificial intelligence in education: Promises and implications for teaching and learning”, Center for Curriculum Redesign, available online at: https://www.researchgate.net/publication /332180327_Artificial_Intelligence_in_Education_Promise_and_Implications_for_Teaching_and_Learning.

Hung, J., & Chen, J. (2023). “The benefits, risks and regulation of using ChatGPT in Chinese academia: A content analysis”, Social Sciences, Vol. 12, p. 380, doi: https://doi.org/10.3390/socsci12070380.

IMS Global Learning Consortium (2020). “Learning tools interoperability”, Abgerufen von, available online at: https://www.imsglobal.org/activity/learning-tools-interoperability.

Ioku, T., Kondo, S., & Watanabe, Y. (2024). “Acceptance of generative ai in higher education: A latent profile analysis of policy guidelines”, doi: https://doi.org/10.21203/rs.3.rs-4515787/v1.

Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., Papin, K., & Kurtz, G. (2024). “Generative AI and teachers’ perspectives on its implementation in education”, Journal of Interactive Learning Research, Vol. 34, pp. 313–338, available online at: https://www.academia.edu/106455593/Generative_AI_and_Teachers_Perspectives_on_Its_Implementation_in_Education.

Kasneci, E., Sessler, K., Kasneci, G., & Seidel, T. (2023). “ChatGPT for good? On opportunities and challenges of large language models for education”, Learning and Individual Differences, Vol. 103, p. 102274, doi: https://doi.org/10.1016/j.lindif.2023.102274.

Kayyali, M. (2025). “AI in higher education: Revolutionizing curriculum and administration”, in: G. Sart & F. Sezgin (Eds.), AI Adoption and Diffusion in Education, IGI Global Scientific Publishing, pp. 31-62, doi: https://doi.org/10.4018/979-8-3693-7949-3.ch002.

KI@PPHB (2025a). Interaktion mit KI@PPHB zwischen 28.06-30.06.2024 (GPT4o). Input: [Kontrolliere nachfolgende Liste von Publikationen und identifiziere doppelte Studien (schrittweises Vorgehen – jeweils 100 Titeln)]. Output: [Identifikation doppelter Titel], available online at: https://ai.ph-burgenland.at.

KI@PPHB (2025b). Interaktion mit KI@PPHB zwischen 01.07-04.08.2024 (GPT4o). Input: [Fasse mir die Abstracts zusammen und füge mir den Titel hinzu. Maximal 2 Sätze. Wichtig sind die Stichprobe die Methodik und das Ziel der Studie]. Output: [Zusammenfassung der Abstracts mit Titeln], available online at: https://ai.ph-burgenland.at.

KI@PPHB. (2025c). Interaktion mit KI@PPHB zwischen 01.07-04.08.2024 (GPT4o). Input: [Untersuche nachfolgende Abstracts, Identifiziere Studien, Artikeln, Konferenzbeiträge, die sich KI-Anwendungen in der Bildung beschäftigen (Zahlreiche Iterationen waren nötig)], Output: [Identifikation der Titeln], available online at: https://ai.ph-burgenland.at.

Larrondo, P., Frank, B., & Ortiz, J. M. (2024). “Work-in-progress: Fine-tuning large language models for automated feedback in complex engineering problem-solving”, The Future of Engineering Education — Annual Conference and Exposition 2024.

Lee, P., Bubeck, S., & Petro, J. (2023). “Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine”, New England Journal of Medicine, Vol. 388, pp. 1233–1239, doi: https://doi.org/10.1056/nejmsr2214184.

Leitgeb, T., Maitz, K., Sitter, G., Matischek-Jauk, M., Mößlacher, C., Knaus, M., Gabriel, H., & Meller, S. (2024). “KI-Leitlinien für den PH-Verbund Süd-Ost – Leitlinien für die Nutzung von Künstlicher Intelligenz in der Hochschule“, University College of Teacher Education Burgenland, Eisenstadt, doi: https://doi.org/10.5281/zenodo.13693466.

Li, H. (2023). “AI in education: Bridging the divide or widening the gap? Exploring equity, opportunities, and challenges in the digital age”, Advances in Education, Humanities and Social Science Research, doi: https://doi.org/10.56028/aehssr.8.1.355.2023.

Lipton, Z. C. (2018). “The mythos of model interpretability”, Communications of the ACM, Vol. 61, No. 10, pp. 36–43, doi: https://doi.org/10.1145/3233231.

Maphalala, M. C., & Ajani, O. A. (2025). “Leveraging artificial intelligence as a learning tool in higher education, Interdisciplinary Journal of Education ResearchVol. 7, No. (1), p. a01, doi: https://doi.org/10.38140/ijer-2025.vol7.1.01.

Mayring, P. (2015). Qualitative Inhaltsanalyse: Grundlagen und Techniken (12. Aufl.), Beltz. 

Mayring, P. (2019). “Qualitative Inhaltsanalyse. Abgrenzungen, Spielarten, Weiterentwicklungen [30 Absätze]”, Forum: Qualitative Social Research, Vol. 20, No. 3, Art. 16, doi: http://dx.doi.org/10.17169/fqs-20.3.3343.

McDonald, N., Johri, A., Ali, A., & Hingle, A. (2024). “Generative artificial intelligence in higher education: Evidence from an analysis of institutional policies and guidelines”, doi: https://doi.org/10.48550/arXiv.2402.01659.

Misino, E., Calegari, R., Lombardi, M., & Milano, M. (2024). “Ensuring fairness stability for disentangling social inequality in access to education: The FAiRDAS general method”, Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 7412-7420, doi: https://doi.org/10.24963/ijcai.2024/820.

Modran, H., Bogdan, I. C., Ursuțiu, D., Samoila, C., & Modran, P. L. (2024). “LLM intelligent agent tutoring in higher education courses using a RAG approach”, Preprints, doi: https://doi.org/10.20944/preprints202407.0519.v1.

Mendiratta, A., Singh, S., Yadav, S. S., & Mahajan, A. (2023). “Bibliometric and topic modeling analysis of corporate social irresponsibility”, Global Journal of Flexible Systems Management, pp. 1–21, doi: https://doi.org/10.1007/s40171-023-00343-2.

Natukunda, A., & Muchene, L. K. (2023). “Unsupervised title and abstract screening for systematic review: A retrospective case-study using topic modelling methodology”, Systematic Reviews, Vol. 12, pp. 1–16, doi: https://doi.org/10.1186/s13643-022-02163-4.

Ng, C., & Fung, Y. (2024). “Educational personalized learning path planning with large language models”, available online at: https://arxiv.org/abs/2407.11773.

Niu, K., Jia, B., Zhou, Y., & Lu, G. (2022). “A hybrid model for predicting academic performance of engineering undergraduates”, Int. J. Model. Simul. Sci. Comput., Vol. 14, 2350030:1-2350030:19, doi: http://dx.doi.org/10.1142/S1793962323500307.

Ogalo, E., & Mtenzi, F. (2023). “Leveraging artificial intelligence tools for learning: Academic integrity and ethics in higher education in Kenya”, Institute for Educational Development, East Africa, doi: https://doi.org/10.4018/979-8-3373-0025-2.ch001.

Oliński, M., Krukowski, K., & Sieciński, K. (2024). “Bibliometric overview of ChatGPT: New perspectives in social sciences”, Publications, Vol. 12, No. 9, doi: https://doi.org/10.3390/publications12010009.

Ouyang, F., Zheng, L., & Jiao, P. (2022). “Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020”, Education and Information Technologies, Vol. 27, No. 6, pp. 7893–7925, doi: https://doi.org/10.1007/s10639-022-10925-9.

Ogunleye, B., Zakariyyah, KI., Ajao, O., Olayinka, O., & Sharma, H. (2024). “A systematic review of generative AI for teaching and learning practice”, Education Sciences,  Vol. 14, No. 6, p. 636, doi: https://doi.org/10.3390/educsci14060636.

Omughelli, D., Gordon, N., & Al Jaber, T. (2024). “Fairness, bias, and ethics in AI: Exploring the factors affecting student performance”, Journal of Intelligent Communication,  Vol. 4, No. 1, pp. 100–110, doi: https://doi.org/10.54963/jic.v4i1.306.

OpenAI (2023). “GPT-4 Technical Report”, doi: https://doi.org/10.48550/arxiv.2303.08774.

Pagano, T., Loureiro, R. B., Lisboa, F. V. N., Peixoto, R. M., Guimarães, G. A. S., Cruz, G. O. R., Araujo, M. M., Santos, L. L., Cruz, M. A. S., Oliveira, E. L. S., Winkler, I., & Nascimento, E. G. S. (2023). “Bias and unfairness in machine learning models: A systematic review”, Big Data Cogn. Comput., Vol. 7, No. 15, doi: https://doi.org/10.3390/bdcc7010015.

 

Pavlik, J. V. (2023). “Collaborating with ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education”, Journal of Mass Communication Education, Vol. 78, pp. 84–93, doi: https://doi.org/10.1177/10776958221149577.

Pannu, J., & Boosalis, C. (2023). “A use-case for implementing ChatGPT to augment teaching an introductory statistics course, in: Proceedings of the Future Technologies Conference, Cham: Springer Nature Switzerland, pp. S.196–203, doi: https://doi.org/10.1007/978-3-031-47454-5_15.

Pishtari, G., Wagner, M., & Ley, T. (2024). „Bericht für Arbeitspaket 3 (Preprint) Ein Forschungsüberblick über den Einsatz von Künstlicher Intelligenz für das Lehren und Lernen in der Hochschulbildung”, in: Gerhard Brandhofer, Ortrun Gröblinger, Tanja Jadin, Michael Raunig & Julia Schindler (Eds.), Von KI lernen, mit KI lehren: Die Zukunft der Hochschulbildung, FNMA, Lustenau. 

PRISMA. (2020). “Preferred reporting items for systematic reviews and meta-analyses”, available online at: http://www.prisma-statement.org/.

Romanelli, J. P., Gonçalves, M. C. P., de Abreu Pestana, L. F., Soares, J. A. H., Boschi, R. S., Andrade, D. F. (2021). “Four challenges when conducting bibliometric reviews and how to deal with them”, Environmental Science and Pollution Research, Vol. 28, pp. 60448–60458, doi: https://doi.org/10.1007/s11356-021-16420-x.

Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta Llovet, J., & Gonzalez-Rodriguez, M. et al. (2023). “Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix”, Sustainability, Vol. 15, p. 11524, doi: https://doi.org/10.3390/su151511524.

Russell, S. J., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.), Pearson.

Samek, W., Wiegand, T., & Müller, K. R. (2017). “Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models”, ITU Journal: ICT Discoveries, Special Issue 1, pp. 39–48, doi: http://dx.doi.org/10.48550/arXiv.1708.08296.

Sanasintani, S. (2023). “Revitalizing the higher education curriculum through an artificial intelligence approach: An overview”, Journal of Social Science Utilizing Technology, doi: http://dx.doi.org/10.55849/jssut.v1i4.670.

Selwyn, N.  (2019).  Should Robots Replace Teachers? AI and the Future of Education (1st ed.), Polity Press, available online at: https://www.wiley.com/en-gb/Should+Robots+Replace+Teachers%3F%3A+AI+and+the+Future+of+Education-p-9781509528967.

Slade, S., & Prinsloo, P. (2013). “Learning analytics: Ethical issues and dilemmas”,  American Behavioral Scientist,  Vol. 57, No. 10, pp. 1510–1529, doi: https://doi.org/10.1177/0002764213479366.

Smart Sparrow (2024). “Adaptive learning platform”, available online at: https://www.smartsparrow.com.

Sailer, M., Bauer, E., Hofmann, R., Kiesewetter, J., Glas, J., Gurevych, I., & Fischer, F. (2023). “Adaptive feedback from artificial neural networks facilitates pre-service teachers’ diagnostic reasoning in simulation-based learning”, Learning and Instruction, Vol. 83, p. 101620, doi: https://doi.org/10.1016/j.learninstruc.2022.101620.

Singh, M., Sharma, D., Ma, A., & Goldfine, N. (2024). “Towards more accurate prediction of human empathy and emotion in text and multi-turn conversations by combining advanced NLP, transformers-based networks, and linguistic methodologies”, available online at: https://arxiv.org/abs/2407.18496.

Singhal, S. (2024). “Data privacy, compliance, and security including AI ML: Healthcare”, in: P. Whig, S. Sharma, S. Sharma, A. Jain, & N. Yathiraju (Eds.),  Practical Applications of Data Processing, Algorithms, and Modeling, IGI Global, pp. 111-126, doi: https://doi.org/10.4018/979-8-3693-2909-2.ch009.

Stamper, J., Xiao, R., & Hou, X. (2024). “Enhancing LLM-based feedback: Insights from intelligent tutoring systems and the learning sciences”, doi: https://doi.org/10.48550/arxiv.2405.04645.

Strubell, E., Ganesh, A., & McCallum, A. (2019). “Energy and policy considerations for deep learning in NLP”, in: A. Korhonen, D. Traum, & L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 3645–3650, doi: https://doi.org/10.18653/v1/P19-1355.

Sullivan, M., Kelly, A., & McLaughlan, P. (2023). “ChatGPT in higher education: Considerations for academic integrity and student learning”, Journal of Applied Learning and Teaching, Vol. 6, pp. 1–11, doi: http://dx.doi.org/10.37074/jalt.2023.6.1.17.

Suresh, S., & Misra, S. M. (2024). “Large language models in pediatric education: Current uses and future potential”, Pediatrics,  Vol. 154, No. 3, p. e2023064683, doi: https://doi.org/10.1542/peds.2023-064683.

Tanisha, J., Rajesh, P., Singh, R., Adhip, K., Stuti, K., & Ajitha, D. (2024). Privacy and data protection challenges in Industry 4.0: An AI-driven perspective”, World Journal of Advanced Engineering Technology and Sciences, doi: https://doi.org/10.30574/wjaets.2024.12.2.0287.

Taneja, K., Maiti, P., Kakar, S., Guruprasad, P., Rao, S., & Goel, A. K. (2024). “Jill Watson: A virtual teaching assistant powered by ChatGPT”, in: Olney, A. M., Chounta, I. A., Liu, Z., Santos, O. C., & Bittencourt, I. I. (Eds.), Artificial Intelligence in Education, AIED 2024: Lecture Notes in Computer Science, Vol. 14829, Springer, Cham, doi: https://doi.org/10.1007/978-3-031-64302-6_23.

Thurzo, A., Strunga, M., Urban, R., Surovková, J., & Afrashtehfar, K. I. (2023). “Impact of artificial intelligence on dental education: A review and guide for curriculum update”, Education Sciences, Vol. 13, p. 150, doi: http://dx.doi.org/10.3390/educsci13020150.

Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). “What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education”, Smart Learning Environments, Vol. 10, p. 15, doi: https://doi.org/10.1186/s40561-023-00237-x.

Tulang, R., & Chen, Y. (2023). “AI in education: Bridging the divide or widening the gap? Exploring equity, opportunities, and challenges in the digital age”, Advances in Education, Humanities and Social Science Research, Vol. 8, No. 1, pp. 355–370, doi: https://doi.org/10.56028/aehssr.8.1.355.2023.

Umanets, V., Shakhina, I., & Rozputnia, B. (2024).  Modern information technologies and innovation methodologies of education in professional training: Methodology, theory, experience problems”,  Vol. 72, pp. 162–169, doi: https://doi.org/10.31652/2412-1142-2024-72-162-170.

Valentin, S., Fu, J., Detommaso, G., Xu, S., Zappella, G., & Wang, B. (2024). “Cost-effective hallucination detection for LLMs”, available online at: https://arxiv.org/abs/2407.21424v2.

Van Eck, N. J., & Waltman, L. (2010). “Software survey: VOSviewer, a computer program for bibliometric mapping”, Scientometrics, Vol. 84, pp. 523–538, doi: https://doi.org/10.1007/s11192-009-0146-3.

Van Eck, N. J., & Waltman, L. (2017). “Citation-based clustering of publications using CitNetExplorer and VOSviewer”, Scientometrics, Vol. 111, pp. 1053–1070, doi: http://dx.doi.org/10.1007/s11192-017-2300-7.

Villarreal-Torres, H., Ángeles-Morales, J., Marín-Rodriguez, W., Andrade-Girón, D., Cano-Mejía, J., Mejía-Murillo, C., & Palomino-Márquez, M. (2023). “Classification model for student dropouts using machine learning: A case study”, EAI Endorsed Transactions on Scalable Information Systems, doi: http://dx.doi.org/10.4108/eetsis.vi.3455.

Vagelas, I., & Leontopoulos, S. (2024). “A bibliometric analysis and a citation mapping process for the role of soil recycled organic matter and microbe interaction due to climate change using Scopus database”, AgriEngineering, Vol. 5, pp. 581–610, doi: http://dx.doi.org/10.3390/agriengineering5010037.

Vincent-Lancrin, S.,  &  R. van der Vlies (2020). “Trustworthy artificial intelligence (AI) in education: Promises and challenges”, OECD Education Working Papers, No. 218, OECD Publishing, Paris,  doi: https://doi.org/10.1787/a6c90fa9-en.

von, Eschenbach., & J, Warren (2021). “Transparency and the black box problem: Why we do not trust AI”, Philosophy & Technology, pp. 1–16, available online at: https://link.springer.com/article/10.1007%2Fs13347-021-00477-0.

Wang, L., Ma, C., & Feng, X. et al. (2024). “A survey on large language model based autonomous agents”, Front. Comput. Sci., Vol. 18, p. 186345, doi: https://doi.org/10.1007/s11704-024-40231-1.

Wen, Q., Liang, J., Sierra, C., Luckin, R., Tong, R., Liu, Z., Cui, P., & Tang, J. (2024). “AI for education (AI4EDU): Advancing personalized education with LLM and adaptive learning”, doi: https://doi.org/10.1145/3637528.3671498.

Wen, W., Liu, Y., Zhu, Z., & Shi, Y. (2023). “A study on the learning early warning prediction based on homework habits: Towards intelligent sustainable evaluation for higher education”, Sustainability, Vol. 15, No. 5, p. 4062, doi: https://doi.org/10.3390/su15054062.

Wei, L. (2023). “Artificial intelligence in language instruction: Impact on English learning achievement, L2 motivation, and self-regulated learning”, Frontiers in Psychology, Vol. 14, p. 1261955, doi: https://doi.org/10.3389/fpsyg.2023.1261955.

Winkler, R., & Söllner, M. (2018). “Unleashing the potential of chatbots in education: A state-of-the-art analysis”, in: Proceedings of the International Conference on Information Systems, doi: https://doi.org/10.5465/AMBPP.2018.15903abstract.

Wuerfe, T., & Mayweg-Paus, E. (2023). “‘Your argumentation is good’”, says the AI vs humans — The role of feedback providers and personalized language for feedback effectiveness”, Computers and Education: Artificial Intelligence, Vol. 5, p. 100189, doi: https://doi.org/10.1016/j.caeai.2023.100189.

Yang, H., Gao, C., & Shen, H. Z. (2023). “Learner interaction with, and response to, AI-programmed automated writing evaluation feedback in EFL writing: An exploratory study”, Education and Information Technologies, pp. 1–22, doi: https://doi.org/10.1007/s10639-022-10925-9.

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). “Systematic review of research on artificial intelligence applications in higher education — Where are the educators?”, International Journal of Educational Technology in Higher Education, Vol. 16, No. 1, p. 39, doi: https://doi.org/10.1186/s41239-019-0171-0.

Zhang, C., Zhang, C., Li, C., Qiao, Y., Zheng, S., Dam, S. K., & Hong, C. S. (2023). “One small step for generative AI, one giant leap for AGI: A complete survey on ChatGPT in AIGC era”, available online at: https://arxiv.org/abs/2304.06488.

Zheng, L., Niu, J., Zhong, L., & Gyasi, J. F. (2021). “The effectiveness of artificial intelligence on learning achievement and learning perception: A meta-analysis”, Interactive Learning Environments, Vol. 31, pp. 5650–5664, doi: http://dx.doi.org/10.1080/10494820.2021.2015693.





Copyright 2013 - 2028 Academic Star Publishing Company