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Abstract: The straight prismatic beam loaded on bending is considered at the paper. The beam is uniformly heated and it is situated in 

the state of steady-state creep. If the bending moment, My acts on the beam, the normal stresses, x, appear which will be constant over 

the time. Those stresses are non-linearly distributed across the cross-section of the beam, what was investigated and published in the 

earlier papers. In this paper, the stresses are analyzed by means of one variation method - the principle of the minimum of 

complementary potential energy accumulated in the beam. The solutions, obtained by that method will be approximate but enough 

accurate, and give the linear distribution of the normal stresses, x, across the cross-section of the beam. They are reliable and good 

approximation of the exact analytical solution. 
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1. Introduction  

The distribution of the normal stresses, x, across the 

cross-section of a prismatic beam, loaded on bending 

and at the steady-state creep conditions was 

determined exactly, analytically, and the obtained 

results were published in the paper [1]. In these articles, 

those results are repeated, on the Fig. 1, in a slightly 

modified form. The results are related to the 

rectangular cross-section of a beam. It is seen, from the 

Fig. 1, that the normal stresses, x, are markedly 

non-linearly distributed across the whole cross-section 

of the beam. The non-linearity is especially stressed at 

the closeness of the neutral axis, y, i.e., for the small 

values of the independent variable, z. The material 

parameter n, which appears in the Norton’s constitutive 

equation [2, 3] assumes the values n = 2, 4, 6, 8 and 10. 

The obtained stress distribution is equivalent to the 
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distribution which will be obtained at the non-linear 

elastic material of the beam. It means that in the 

analysis of stress distribution some of the variation 

methods [4], could be applied. The principle of 

minimum complementary potential energy will be 

applied in this paper. The results obtained by that 

approximate variation method will be compared with 

those obtained by the exact analytical method [1]. 
 

 
Fig. 1  Distribution of non-dimensional normal stresses 

across the cross-section of the beam in the stationary creep 

conditions. 
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From the diagram at the Fig. 1, it can be noticed that 

maximum normal stress, x.max, which appears on the 

outer boundaries of beam, is less in comparison to one 

which appears in the initial moment of creeping, and 

that it decreases as the parameter n increases. Similarly, 

it can be noticed that the stresses become more 

uniformly distributed across the whole cross-section of 

the beam with increase of the parameter n. 

2. Complementary Potential Energy 

Accumulated in the Beam 

The density of complementary potential energy in 

the beam loaded on bending amounts to, according to 

[4] 
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The first summand represents the density of 

hydrostatic strain energy, while the second one is equal 

to the area hatched by the horizontal lines, according to 

the Fig. 2. By bending the beam in the steady-state 

creep conditions, the uniaxial state of stress appears, 

for which is valid e = x and e = e.c = x.c. Also, it is 

assumed that at the beam creeping there is no the 

change of its volume (the beam material is 

incompressible) and .K =   The first summand in the 

expression (1), in that case, becomes equal to zero. 

Furthermore, if instead of, e.c, the Norton’s law is 

inserted [2], according to which is 
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then the expression (1) changes to 
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The complementary potential energy accumulated in 

the whole beam of length, l, is determined by 

integrating across the volume of beam 
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Fig. 2  Equivalent stress-strain diagram of beam material 

and the density of complementary potential energy. 

3. Approximate Solution of Stress 

Distribution in the Steady-State Creep 

Conditions 

The complementary potential energy, according to 

the analytical expression (4), is not possible to 

determine at this moment because the stress 

distribution, x, across the cross-section of the beam is, 

by now, unknown. Therefore, that stress distribution is 

necessary to assume. So, according to the expression 

which is possible to find in the book [4], for the case of 

steady-state creeping, the approximate solution looks 

like 

( ).l .el .l .x x x xk   = +  −              (5) 

This analytical solution was, firstly, suggested by the 

Russian scientist L. M. Kachanov for the case of 

steady-state creep. Namely, in the case of stationary 
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creep the stresses are constant over time. Similarly, the 

stresses are unchanged with time in the problems of 

theory of plasticity. The above expression (5) 

represents the superposition of the two states of stresses: 

one which corresponds to the limit plastic state in 

which it is assumed that the beam material is 

elastic-perfectly plastic, Fig. 3b, and second in which 

the linear distribution of the normal stresses is assumed, 

according to the Fig. 3c. In the first case the stresses are 

calculated according to the formula 

2

.l .pl 4 ,x y y yM W M bh = =  while in the second case 

the stresses are determined from the expression for the 

elastic range, i.e., 3

.el 12 .x yM z bh =   

When those expressions are inserted in the formula 

(5) it is obtained 
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The linear dependence of the stresses, x, upon the 

variable, z, is easily noticed from the expression (6). By 

superposing the diagrams at the Figs. 3b and 3c, the 

resulting diagram of the stress distribution in the beam 

is achieved in the case of stationary creep, according to 

the Fig. 3f. The solution is approximate and reminds on 

the stress distribution in the beam in the theory of 

plasticity in the case of elastic-linear strain hardening 

material. The qualitative illustration of the stress 

distribution, x, is presented diagrammatically on the 

Figs. 3b to 3f. 

 
Fig. 3  Distribution of the normal stresses, x, across the cross-section of the beam in the steady-state creep conditions, 

according to the expression (5) as L. M. Kachanov suggested: a) cross-section of the beam, b) case of limit plastic state, c) case 

of linear elastic state, f) resulting diagram which approximates the stress distribution in the case of steady-state creep. 
 

4. Principle of Minimum Complementary 

Potential Energy 

The expression (6) is inserted in (4) and it is obtained 
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Now, the principle of minimum complementary 

potential energy is applied, according to Ref. [4], i.e., it 

is looked for 

0.k  =              (8) 

According to that principle, of all possible static 

states of stresses, the complementary potential energy 

accumulated in the whole beam will have the minimum 

value, only in the case of true state of stress. So, from 
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the expression (7) and the condition (8), after arranging, 

the non-linear algebraic equation, k = k (n), is obtained, 

from which the values of proportionality factor, k, is 

calculated in dependence of parameter, n. The equation 

looks like 
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     (9) 

5. Numerical Solution of the Non-Linear 

Algebraic Equation 

The Eq. (9) is markedly non-linear. It is possible to 

solve it by some mathematical program package. In 

this paper the program package Wolfram Mathematica 

7.0 was used [7]. For the discreet values of the material 

parameter n = 1, 2, 3,…, 14, the values of 

proportionality factor, k, were determined numerically, 

respectively, the inverse procedure was applied, i.e., 

for assumed values of factor, k, the parameter, n, was 

determined. The results of computation are presented 

in the Table 1. On the basis of that results the graph of 

the function, k = k (n), was constructed and it is 

presented at the Fig. 4. 

 

Table 1  For the assumed values of factor, k, the value of material parameter, n, is determined, numerically. 

k [-] 0.1 0.14 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

n [-] 14 10 6.95 4.546 3.32 2.60 2.082 1.717 1.444 1.20 1 

 

 
Fig. 4  Diagrammatic presentation of dependence of proportionality factor, k, on the material parameter, n. 

 

6. Comparison of Exact Analytical and 

Approximate Variation Solution for Stress 

Distribution  

Normal stress distribution, x, across the 

cross-section of prismatic beam, loaded on bending and 

in the stationary creep conditions, was determined 

exactly, analytically, and the results were presented 

diagrammatically in the papers [1, 9]. The same results 

were repeated once again in this paper, on the Fig. 1, so 

they could be compared with the results achieved by 

approximate analytical method, according to the 

expressions (5) and (6). Only the final expressions 

needed for computing and drawing the curves 

presented at the Fig. 1 are quoted. Those formulae were 

derived in the papers [1, 9] and here only their final 

forms are quoted, in the Table 2, according to which 

the curves, at the Fig. 1, were calculated and drawn, 
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using the program package Wolfram Mathematica 7.0, 

[7]. 

The normal stress distribution, x, across the 

cross-section of the beam, according to the variation 

method, is calculated according to the approximate 

expression (6). That method gives the linear 

dependence of the stresses, x, on the variable, z. The 

values of the proportionality factor, k, are taken from 

the Table 1, or they are red off from the Fig. 4 for the 

discreet values of the material parameter n = 2, 4, 6, 8 

and 10. Finally, the comparison of the exact analytical 

and approximate variation solution which is, at the 

same time, linear, is presented at the Figs. 5a to 5d. It is 

seen that this approximate solution excellently 

approximates the exact, non-linear, analytical solution. 

 

Table 2  Analytical expressions for an exact computing and drawing the diagram of stress distribution, derived in the paper 

[1]. 
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(c)                                                     (d) 

Fig. 5  Comparison of the exact analytical and the approximate variation solution for the stress distribution in the beam in the 

stationary creep conditions. 
 

7. Conclusion 

The prismatic beam loaded on bending was 

considered in this paper, which is situated in the state of 

stationary creep. The stress distribution in a such beam 

and at the such conditions is possible to determine 

exactly, analytically, what was performed and 

indicated in the paper [1] and in some modified form is 

again presented at this paper, on the Fig. 1. As it can be 

seen from the Figure, that distribution is markedly 

non-linear with great gradients, especially in the 
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middle of cross-section of the beam, around the neutral 

axis, y.  

Therefore, the prime task of this paper was to 

determine the stress distribution by some approximate, 

variation method which will be enough accurate and 

reliable and which will give, eventually, the linear 

stress distribution for the steady-state creep conditions 

of the beam. Therefore, the approximate solution was 

taken in the form as it was suggested by Russian 

scientist L. M. Kachanov in the book [4]. It is presented 

by the analytical expression (5), and the qualitative 

stress distribution, according to that solution, is 

presented diagrammatically on the Fig. 3f. In order to 

achieve that solution a variation method was applied 

which is founded on the principle of minimum 

complementary potential energy [4]. The comparison 

of the exact analytical and the approximate variation 

solution for the stress distribution in the beam is 

presented at the Figs. 5a to 5d, for the discreet values of 

the material parameter n = 2, 6, 8 and 10. It is seen that 

the approximate solution excellently approximates the 

exact analytical solution, except in the immediate 

closeness of the neutral axis, y. Namely, at that place, at 

the approximate solution, the discontinuance in the 

stress distribution exists, what is seen from the diagram 

at the Fig. 3f. To conclude, the variation method gives 

the solution which is enough accurate and reliable for 

the engineering calculations, and as it is linear, it 

means that the performance of the analysis, i.e., the 

numerical procedure, is simple. 
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