A Systematic Literature Review and Research Frontier Analysis of Health Research in Urban Green Space

Nan Zhang, and Lin Zhao
Qingdao University of Technology, China

Abstract: As urban problems and the COVID-19 pandemic worsen, public health issues are taken seriously. As an important part of building environment, urban green space has been concerned about its health. The paper of 2035 in Web of Science Core database is taken as the research object, and CiteSpace visualization software is used for research and analysis to clarify the status quo of urban green space and health (UGSH) field. The research shows that the research object has gradually expanded from a single green space to cities, countries and the world. The research focuses on the relationship between people and green space, and discusses the comprehensive benefits of green space. Research methods from early investigation and evaluation, simulation experiment to qualitative and quantitative cross analysis, formed a relatively perfect subjective and objective research paradigm. In addition, the research content mainly focuses on the urban ecosystem, mental health and physical health. In a review of the existing research, the urban green space to promote public health, the improvement of human welfare puts forward three Suggestions: 1) in the urban planning, the city as a comprehensive social ecosystem, the urban green space planning and design should pay attention to provide ecosystem services and create a social network, in order to improve the social and environmental justice; 2) Urban planning should consider residents’ preferences for different green Spaces to create a more pleasant living environment; 3) Improve the coverage of urban green infrastructure and expand the ecological network.

Key words: urban green space, health, CiteSpace, research frontier

1. Introduction

Bibliometrics is a statistical analysis and quantitative method. It is usually used in publications to study information systems and documents, using mathematical and statistical methods to explore and investigate the distribution structure, quantitative change and change patterns of work. There are many software available for literature analysis, e.g., HistCite, VOSviewer, CiteSpace and more. CiteSpace software is one of the most popular bibliometric visualization tools and has been applied and reviewed in many fields, such as health psychology [1], public health values [1] and so on. To be specific, The CiteSpace software could create knowledge maps specifically in a certain area [2] and solve three practical problems starting from the administration about special mental functions, active recognition, and exoticism. Marking cues, recognizing new trends and abrupt changes over time, and exploring boundaries [3, 4]. On this basis, CiteSpace can expand our understanding and thus promote our overall understanding of UGSH.

2. Material and Methods

Data were collected from the Web of Science Core Collection (WOSCC) and the search formula was: TS = Topic: “urban green space OR city green space” And “health”. The search period was set as “All years (from 1990 to 2020)”, the document type was set as “Article” and “review”, and the publication language was set as “English”. Finally, 2035 related references were found in total. All articles are downloaded and saved as TXT
files, including: title, keywords, authors, abstracts, descriptors, identifiers, etc.

2.1 Analysis Tool

CiteSpace (5.7.R2, 64-bit) is a visualization software for bibliometric analysis. CiteSpace is a free Java application invented by Dr. Chen Chaomei (Drexel University, Philadelphia, PA, USA). It visualizes information through data mining algorithms and bibliometrics[5]. The visual knowledge map created by CiteSpace is mainly composed of nodes and links. Among them, nodes represent analysis elements, including author, institution, country, key words, cited references, etc. The line between two nodes represents cooperation or association. The colors of the nodes and lines represent the years. The size of a node indicates the frequency of occurrences or references.

CiteSpace software has six steps: time slicing, threshold processing, modeling, pruning, merging, and mapping. As for the parameters of CiteSpace software, in the literature search, it was found that the first paper was published in 2008, the time slice was set as “2008-2021” and the year of each slice was set as “1”. What is more, term source set to “select all”, node type set to “select 1 at a time”, selection criteria set to “Top 50 objects”, pruning method set to “Cluster View - Static, show merged network”, visual map set to “Cluster View - Static, show merged network”. To be extract, the higher the Q value (Q) and the silhouette value (S), the better the scientific nature and usability of the visual knowledge map. When Q > 0.3, the network clustering structure is significant. When S > 0.5, the clustering results have high reliability [6].

2.2 Statistical Analysis

On the one hand, the general information of UGSH related studies is understood based on literature analysis. These include annual publications, countries/territories, funding agencies, research areas, authors, journals, and so on. On the other hand, the knowledge base, development track and research hot-spot of relevant research fields can be intuitively observed through visual analysis. Specifically, the publication trend of UGSH-related studies was first understood through bibliometric analysis. CiteSpace software is used to identify top countries, institutions, authors, journals and references in relevant research fields. Secondly, the co-citation analysis of authors, journals and references is carried out to clarify the research basis of this field. Thirdly, the research frontier and development trend of urban green space and health are obtained through keyword co-occurrence analysis. Through keyword emergent analysis, the research hot-spot of urban green space and health is explored, and the turning point or key point of this field is grasped.

3. Results and Discussion

3.1 Analysis of Publication Outputs

From 2008 to 2021, a total of 2,035 studies on UGSH-related field were published, and the annual output of this field shows a significant upward trend. The research trend can be divided into three stages. The first phase, from 2008 to 2016, is a slowly rising phase, with few papers published on urban green space and health. The second phase, from 2016 to 2018, saw a steady increase in the number of papers on related research. In the third stage, starting from 2019, the number of publications on UGSH has increased significantly. Until now, post-traumatic growth research has not reached a peak, which means there is growing academic interest in the field (Fig. 1).

3.2 Analysis of Countries, Institutions, Funding Sources, Research Fields and Authors

As shown in Table 1, the USA clearly dominated the number of publications in UGSH field (531 publications), followed by China (392 publications), England (315 publications), Australia (211 publications) and Spain (170 publications). The institution with the most publications was the Pompeu Fabra University (93 publications), followed by Ciber
Centro De Investigacion Biomedica En Red (92 publications), Ciberesp (90 publications), Isglobal (81 publications) and University of California System (70 publications). And the National Natural Science Foundation of China NSFC, European Commission and UK Research Innovation UKRI were the top 3 funding sources. The distribution of top 10 research fields on related research were also as follows. Obviously, Environmental Sciences Ecology was the most prolific fields (1413 publications), followed by public environmental occupational health (630 publications), urban studies (480 publications), forestry (306 publications) and science technology other topics (269 publications). Of the top 10 contributing authors who have published articles related to UGSH-related researches, Nieuwenhuijsen MJ (77 publications) was ranked first, followed by Dadvand P (32 publications), Cirach M (29 publications), Grazuleviciene R (27 publications) and Gascon M (24 publications), which suggesting that they are the most active and professional authors in the field of urban green space and health.

![Fig. 1 The number of annual publications from 2008 to 2021.](image)

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Country</th>
<th>Institution</th>
<th>Funding Source</th>
<th>Research Field</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA (531)</td>
<td>Pompeu Fabra University (93)</td>
<td>National Natural Science Foundation of China NSFC (192)</td>
<td>Environmental Sciences Ecology (1413)</td>
<td>Nieuwenhuijsen MJ (77)</td>
</tr>
<tr>
<td>2</td>
<td>Peoples R China (392)</td>
<td>Ciber Centro De Investigacion Biomedica En Red (92)</td>
<td>European Commission (156)</td>
<td>Public Environmental Occupational Health (630)</td>
<td>Dadvand P (32)</td>
</tr>
<tr>
<td>4</td>
<td>Australia (211)</td>
<td>Isglobal (81)</td>
<td>United States Department of Health Human Services (80)</td>
<td>Forestry (306)</td>
<td>Grazuleviciene R (27)</td>
</tr>
<tr>
<td>5</td>
<td>Spain (170)</td>
<td>University of California System (70)</td>
<td>National Institutes of Health NIH USA (78)</td>
<td>Science Technology Other Topics (269)</td>
<td>Gascon M (24)</td>
</tr>
<tr>
<td>6</td>
<td>Germany (152)</td>
<td>University of Exeter (69)</td>
<td>National Science Foundation Nsf (50)</td>
<td>Plant Sciences (266)</td>
<td>Gaston KJ (24)</td>
</tr>
<tr>
<td>7</td>
<td>Netherlands (123)</td>
<td>Helmholtz Association (54)</td>
<td>Natural Environment Research Council Nerc (46)</td>
<td>Physical Geography (215)</td>
<td>Trigueros M (24)</td>
</tr>
<tr>
<td>8</td>
<td>Canada (116)</td>
<td>University of London (53)</td>
<td>National Health and Medical Research Council of Australia (41)</td>
<td>Public Administration (202)</td>
<td>White MP (24)</td>
</tr>
<tr>
<td>9</td>
<td>Italy (87)</td>
<td>Chinese Academy of Sciences (52)</td>
<td>Economic Social Research Council ESRC (37)</td>
<td>Geography (200)</td>
<td>Mitchell R (22)</td>
</tr>
<tr>
<td>10</td>
<td>Scotland (76)</td>
<td>United States Department of Agriculture USDA (44)</td>
<td>Fundamental research funds for the central universities (34)</td>
<td>Engineering (79)</td>
<td>Kruize H (20)</td>
</tr>
</tbody>
</table>
3.3 Analysis of core journals

The ranking of the top 10 journals publishing UGSH studies were presented in Table 2, which were recognized as the core journals in the field. Among them, Urban Forestry Urban Greening published the greatest number of articles on posttraumatic growth (261 publications), followed by International Journal of Environmental Research and Public Health (243 publications), Landscape and Urban Planning (187 publications), Sustainability (138 publications) and Environmental Research (76 publications). Regarding impact factor, all the top 10 journals had an impact factor (IF) > 3.00, Science of the Total Environment had the highest impact factor (IF in 2020 was 9.621), followed by Health Place (IF in 2020 was 7.963), Sustainable Cities and Society (IF in 2020 was 7.587), Environmental Research (IF in 2020 was 6.498) and Landscape and Urban Planning (IF in 2020 was 6.142).

Table 2 Top 10 prolific journals and impact factors in UGSH-related research.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Journal</th>
<th>Publications</th>
<th>Journal</th>
<th>IF (2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urban Forestry Urban Greening</td>
<td>261</td>
<td>Science of the Total Environment</td>
<td>9.621</td>
</tr>
<tr>
<td>2</td>
<td>International Journal of Environmental Research and Public Health</td>
<td>243</td>
<td>Health Place</td>
<td>7.963</td>
</tr>
<tr>
<td>3</td>
<td>Landscape and Urban Planning</td>
<td>187</td>
<td>Sustainable Cities and Society</td>
<td>7.587</td>
</tr>
<tr>
<td>4</td>
<td>Sustainability</td>
<td>138</td>
<td>Environmental Research</td>
<td>6.498</td>
</tr>
<tr>
<td>5</td>
<td>Environmental Research</td>
<td>76</td>
<td>Landscape and Urban Planning</td>
<td>6.142</td>
</tr>
<tr>
<td>6</td>
<td>Science of the Total Environment</td>
<td>59</td>
<td>Urban Forestry Urban Greening</td>
<td>4.537</td>
</tr>
<tr>
<td>7</td>
<td>Health Place</td>
<td>54</td>
<td>Environment International</td>
<td>4.078</td>
</tr>
<tr>
<td>8</td>
<td>Environment International</td>
<td>48</td>
<td>International Journal of Environmental Research and Public Health</td>
<td>3.39</td>
</tr>
<tr>
<td>9</td>
<td>Sustainable Cities and Society</td>
<td>28</td>
<td>Sustainability</td>
<td>3.251</td>
</tr>
<tr>
<td>10</td>
<td>Plos One</td>
<td>25</td>
<td>Plos One</td>
<td>3.24</td>
</tr>
</tbody>
</table>

3.4 Co-words Analysis of Keywords

Keywords can help identify research topics and hot spots in a particular period, among which burst words can predict research frontiers and emerging trends [6] (Fig. 2). As shown in Table 3, the keywords appeared most often with UGSH were “physical activity”, “environment”, “city” etc. According to the keyword co-occurrence cluster analysis, keywords can be divided into 7 clusters, including: mental health, urban heat island, physical activity etc. Overall, the research topics and hotspots of UGSH can be summarized into three aspects, namely, urban ecosystem, physiological health and psychological health. The top 25 keywords with the strongest citation burst strength in UGSH-related researches were presented. These keywords generally covered many aspects of this field, including: walking, inner city, urbanity etc. (Fig. 3).
A Systematic Literature Review and Research Frontier Analysis of Health Research in Urban Green Space

Fig. 3 Top 25 keywords with the strongest citation bursts from 2008 to 2021.

Table 3 Top 10 keywords in terms of co-citation counts and centrality.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Keywords</th>
<th>Co-citation counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>physical activity</td>
<td>596</td>
</tr>
<tr>
<td>2</td>
<td>environment</td>
<td>362</td>
</tr>
<tr>
<td>3</td>
<td>city</td>
<td>316</td>
</tr>
<tr>
<td>4</td>
<td>mental health</td>
<td>299</td>
</tr>
<tr>
<td>5</td>
<td>benefit</td>
<td>267</td>
</tr>
<tr>
<td>6</td>
<td>space</td>
<td>256</td>
</tr>
<tr>
<td>7</td>
<td>exposure</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>ecosystem service</td>
<td>232</td>
</tr>
<tr>
<td>9</td>
<td>association</td>
<td>228</td>
</tr>
<tr>
<td>10</td>
<td>air pollution</td>
<td>225</td>
</tr>
</tbody>
</table>

3.5 Co-cited Analysis of Reference

The top 10 cited references were presented in Table 4. As we can see, the article titled Urban green space, public health, and environmental justice: The challenge of making cities “just green enough” has the highest citation frequency, which was published by Wolch J. R. in 2014 (Cited frequency: 1247). And then what follows is the article titled Nature and Health, which was published by Hartig T. in 2014 (Cited frequency: 1080), and the article titled Urban greening to cool towns and cities: A systematic review of the empirical evidence, which was published by Bowler, Diana E. in 2015 (Cited frequency: 1050). Significantly, among the top 10 cited references in UGSH-related field, most of them discuss the relationship between urban green space and health. These cited references are landmark publications in this field, which providing the foundation for future researches.

These cited references are landmark publications in UGSH field, which providing the foundation for future researches. A timeline visualization of distinct co-citation can help to explore the progress and development tendencies (Fig. 4). It can be seen that the number of nodes has gradually increased since 2008, indicating that the relationship of UGSH field has gradually attracted the attention of scholars. Meanwhile, the map indicated that most of the clusters were concentrated between 2012 and 2014, showing a thematic concentration of UGSH research. Besides, Cluster #2 adjustment had the highest concentration of nodes with citation bursts, followed by Cluster #0 mental health and Cluster #1 urban heat island.

Fig. 4 Timeline of co-citation clusters from 2008 to 2021.
Table 4 The description of top 10 cited references in UGSH-related research.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Published year</th>
<th>Cited frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urban green space, public health, and environmental justice: The challenge of making cities “just green enough”</td>
<td>Wolch J. R.</td>
<td>Landscape and Urban Planning</td>
<td>2014</td>
<td>1247</td>
</tr>
<tr>
<td>3</td>
<td>Urban greening to cool towns and cities: A systematic review of the empirical evidence</td>
<td>Bowler, Diana E.</td>
<td>Landscape and Urban Planning</td>
<td>2015</td>
<td>1050</td>
</tr>
<tr>
<td>5</td>
<td>Morbidity is related to a green living environment</td>
<td>Maas, J.</td>
<td>Journal of Epidemiology and Community Health</td>
<td>2011</td>
<td>519</td>
</tr>
<tr>
<td>6</td>
<td>More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns</td>
<td>Thompson C. W.</td>
<td>Landscape and Urban Planning</td>
<td>2013</td>
<td>492</td>
</tr>
<tr>
<td>7</td>
<td>Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions</td>
<td>Pataki, Diane E.</td>
<td>Frontiers in Ecology and the Environment</td>
<td>2012</td>
<td>466</td>
</tr>
<tr>
<td>8</td>
<td>Exploring pathways linking greenspace to health: Theoretical and methodological guidance</td>
<td>Markevych, Iana</td>
<td>Environmental Research</td>
<td>2015</td>
<td>464</td>
</tr>
<tr>
<td>10</td>
<td>Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation</td>
<td>Sandifer, Paul A.</td>
<td>Ecosystem Services</td>
<td>2015</td>
<td>413</td>
</tr>
</tbody>
</table>

3.6 Co-operation Network Analysis of Countries, Institutions and Authors

To some extent, the Cooccurrence Atlas reflects the closeness between authors, institutions and countries in this field. The United States made the largest contribution to UGSH research, followed by the United Kingdom, China and Canada, with good cooperation and exchange among countries (Fig. 5a). Most of the research institutions are from the United States and China, and the cooperative relationship is relatively nice. The co-op model can be further refined later (Fig. 5b). Similarly, most of the authors of the UGSH study were from the United States and had a good cooperative relationship with each other (Fig. 5c).
4. Discussion

In this study, CiteSpace software was used for bibliometric analysis of UGSH related literature. The research points out the development direction and frontier topics of UGSH research. We further discuss the emphases and hot spots of the research to provide a systematic and comprehensive understanding for researchers in related fields. To sum up, this study found that the literature related to UGSH can be roughly divided into three categories: urban green space and urban ecology, urban green space and physical health, and urban green space and mental health. Many scholars have discussed its relevance.

4.1 Urban Ecosystem and Ecosystem Services

Urban green space refers to outdoor space partially or completely covered by plants, such as grass, trees, shrubs or other types of plants [7]. Generally speaking, green structures can be divided into two types; One is the natural environment with little or no human intervention, such as the national forest park. The other is the artificial green environment for different purposes, such as street parks, green walkways, botanical gardens, etc.

Many studies have shown that, with the acceleration of urbanization and globalization, the closeness between people and green space is one of the main factors affecting the overall health of the public. According to Chiesura [8]; The word “relaxation” was the main answer repeated by most respondents and was the main attraction of urban parks. Resting and relaxing in green spaces can promote health. She also shows that green spaces play an important role in meeting people’s spiritual and public needs. The World Health Organization (WHO) points out that green space is one of the key components of any urban ecosystem [9].

We believe that ecosystem services are the benefits that humans derive from ecosystems, and ecosystem services contribute to public health and social well-being [10]. The social services and advantages of ecosystems can be divided into the following categories: 1) Provision of services refers to the provision of materials needed by the ecosystem; 2) Cultural services, meaning aesthetic and mental health benefits; 3) Regulation service refers to the regulation and optimization of environmental conditions [11]. Urban green infrastructure and green space provide a lot of services to improve the quality of life of citizens. Tzoulas and colleagues [12] suggest that public health is also influenced by a range of biological, social, economic, environmental, cultural and political factors. They refer to the health advantages of ecosystem services as “health ecosystems” and define the relationship between “health ecosystems” and individual health as the result of a range of ecosystem services provided by green infrastructure. Many ecosystem services should be provided locally in the urban green landscape for easy access so that they can be used by more citizens [13].

In fact, urban ecosystems and green spaces include a range of factors that contribute not only to individual health, but also to public health. The interaction of the above factors has a positive impact on the quality of life of urban residents. Perfect urban green network can promote the health benefits of urban green ecosystem. Green network in urban areas can be divided into green space and green walking path [14, 15]. The presence of green space connectivity and green networks provides public green space for urban residents, increasing overall health by promoting accessibility. We believe that the accessibility of green spaces may be the most important environmental determinant of individual health of citizens. And urban green spaces provide opportunities for outdoor sports activities, social contact, and an environment to relax in outdoor spaces [1]. In addition to providing an environment for relaxation or physical activity, green ecosystems can also eliminate air pollutants and improve air quality [16]. Trees and vegetation are important in urban environments for promoting human well-being. Therefore, the construction of ecosystem network should not be interrupted in order to improve continuity.
and vegetation diversity [17].

4.2 Green Space and Physiological Health

Physical health is an important part of public health related to green space. As a bridge between people and urban green space, physical activity has been widely regarded as one of the determinants of physical health in many studies. Physical activity and green spaces are credited with reducing air pollution and urban heat islands. It can also improve the physical health of society by reducing obesity, cardiovascular disease, diabetes and other non-communicable diseases [1]. It is worth noting that factors such as the environment of the park and existing facilities can have an impact on physical health. The type of green space and the level of urbanization will affect human activities. Mytton [18] found in a study in the UK that there is a higher correlation between physical activity and urban green space compared with other architectural spaces. Another study by Picavet [19] in the Netherlands found that different types of green space also affect activity types. Urban green space has more to do with sports and cycling, while agricultural green space has more to do with activities such as agriculture and gardening. The results show that the impact of urban green space on people’s sports activities is mainly manifested in three aspects: first, urban green space can be used as the “background” of people’s sports activities; Secondly, green spaces can become “destinations” for people to actively participate in sports or public activities. Last, green spaces can be part of a pathway to another destination in the city, or part of a walking or running route.

4.3 Green Space and Psychological Health

As mentioned above, according to the Statistics of the United Nations, more than half of the world’s population lives in urban areas, and a large number of rural residents are migrating to cities [1]. The increase of the world’s urban population and rapid and blind urban growth have brought about many problems such as poverty, environmental degradation and population demand exceeding service capacity [21]. The lack of urban infrastructure and public services increases the pressure of residents [22], and brings some negative effects, such as economic pressure, boring lifestyle and environmental problems, which will cause psychological disorders and mental diseases of residents. People living in cities have a faster pace of life and need to face both material and spiritual challenges. The urgency of this lifestyle may cause stress and anxiety, which is psychological disorder. As noted by the World Health Organization (WHO), psychological disorders include a range of problems with different characteristics, such as abnormal thoughts, perceptions, emotions, behaviors and relationships with others [22]. However, many studies have shown that natural and urban green spaces can reduce stress and anxiety levels for mental comfort. [23]. Others have shown that physical activity benefits both physically and mentally. Urban green space can also promote social interaction, which is another important factor in improving mental health, even the most important factor; Because promoting social interaction can help reduce feelings of loneliness and emotional abandonment by improving communication and expanding personal relationships. However, according to the above research results, the health benefits of green space are related to the frequency of use, and also positively correlated with the number of green space and the distance to the nearest green space. And the physical properties and characteristics of green space, as well as the physical characteristics and characters of green space [24].

4.4 Strengths and Limitations

To our knowledge, this is the first bibliometric study using scientometrics to focus on trends in UGSH. Compared with traditional reviews, visual analysis based on CiteSpace software can help better understand the evolution of research hotspots and trends. In addition, this study systematically retrieved
all relevant data of UGSH research from Web of Science, and comprehensively analyzed the status quo and trend of relevant research, which can provide guidance for beginners and researchers in this field. However, some limitations should be noted in this study. Firstly, all the literature only comes from one source, namely the Web of Science core database, which is not comprehensive enough. Second, qualifiers are used in article retrieval, which makes it impossible to identify all studies. Third, only publications published in English are included in this study. In fact, some non-English publications are also of reference value. Therefore, there may be some selection bias in this study, as these limitations may prevent us from retrieving all papers related to urban green Spaces and health topics. Nevertheless, the results of this study do provide a clear picture and approximation of bibliometrics, quality, citation analysis, collaborative network analysis, hot spots, frontiers and trends in urban green Spaces and health-related fields. At the same time, it is hoped that future studies can overcome these limitations and make more accurate analysis and comprehensive comparison of publications in this field.

5. Conclusion

In intensive cities more and more common, and urban green space to maintain a good relationship is a necessary. This paper reviews the interrelationship between UGSH. Studies have shown that urban green Spaces play a more important role in improving individual health and well-being than the built environment. In this study, we found three ways that green Spaces can affect people’s health and well-being. 1) Encourage people to take more outdoor physical activities to improve their physical health; 2) Create a calm and low-stress environment for people so they can rest quietly, away from the stress, anxiety and tension of urban environments associated with mental health; 3) Provide a basis for people to interact and engage in social activities that ultimately improve mental health.

Three recommendations for urban green spaces to promote public health and enhance human well-being are presented in a review of existing research: 1) we recommend that urban planning understand the city as an integrated social-ecological system in which urban green spaces are planned and designed to focus on providing ecosystem services while being able to create social networks to improve social and environmental justice; 2) urban planning consider residents' preferences for different green spaces to create a more pleasant living environment; and 3) improve the coverage of urban green infrastructure to expand the ecological network. It is expected that the correlation between urban green space and health can bring some inspiration to urban space planning in the future.

References

A Systematic Literature Review and Research Frontier Analysis of Health Research in Urban Green Space

