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Abstract: In this work, the main focus is a methodology for the analysis of the settlements of a spread footing underneath the center of 

compression load area applying the Theory of Linear Viscoelasticity. A review of the foundations of Linear Viscoelasticity and the 

development leading to the equation for solving the problem are briefly presented. It was possible to represent the viscoelasticity 

behavior of materials through rheological models formed by a combination of springs, dashpots and friction blocks. Their creep 

functions may be adopted to model in approximate value the behavior of materials or structural elements and foundations. The 

rheological model in this study consists of a spring in series with a Kelvin model (a spring and a dashpot in parallel). The method is 

illustrated with an example as following: footing of width 1.2 m and average applied stress 174.2 kN/m². Settlement growth is observed 

over time. The estimated values are always very small, reaching only 6.4 mm. It is already expected such a low value due to footing 

width, average applied stress, coefficient of viscosity, transverse elastic modulus, Poisson's ratio and soil elastic modulus. Settlements 

tend toward stabilizing after about 300 days. 
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1. Introduction  

Rheology is the science dealing with the 

deformation and flow of matter. Deformation refers to 

the change in shape and dimensions of the amount of 

matter, under the influence of external forces. The flow 

of matter is associated with the portion of the 

deformation which is time dependent. 

A didactical manner of representing the viscoelastic 

behavior of materials is to apply rheological models 

constituted by a combination of springs, dashpots and 

friction blocks. Their creep functions may be employed 

to approximate the behavior of materials or structural 

elements and foundations. 

When a material exhibits linear viscoelastic behavior, 

in an any given time, the stress is proportional to rate of 

strain and the Boltzmann superposition principle is 

valid, represented by the following expressions: 
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( ) ( )C t C t   =      
               (1) 

( ) ( ) ( ) ( )1 2 1 1 2 1t t t t t t      + − = + −            (2) 

where: 

 = applied stress; 

 = resulting deformation; 

C = constant. 

Creep functions exert the same function in 

Viscoelasticity comparing to elastic parameters in 

Elasticity. It means that they establish the relation 

between stress and deformations including the time 

variable in this context. Thus, a viscoelastic problem is 

defined if all creep functions are known, besides the 

boundary conditions. Creep tests, empirical 

expressions or mathematical modeling of phenomena 

may be used to determine these functions. 

This work presents the estimation of settlements of a 

spread footing underneath the center of a compression 
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load area applying the Theory of Linear Viscoelasticity. 

Therefore we reach an outcome over time. 

2. Fundamentals of Linear Viscoelasticity 

Different authors provide definitions about the 

fundamentals of Linear Viscoelasticity [1-3]. The 

following is a brief review of the fundamentals of 

Linear Viscoelasticity [4-6]. 

2.1 Concept of Creep and Relaxation  

Creep is a type of slow and permanent deformation 

occuring in certain materials due to exposure to 

constant stress and temperature. Creep can be 

subdivided into: (i) primary, exhibiting a decreasing 

strain rate, (ii) secondary, when the deformation speed 

is constant, (iii) tertiary, when the creep is accelerating 

until fracture.  

Relaxation is the gradual reduction in stress when a 

material is loaded and then held at a constant level of 

strain, under constant temperature.  

2.2 Viscoelastic Models 

To acquire a better understanding of the 

macroscopic mechanisms governing the behavior of a 

real system, it is a common practice to replace that 

system with an ideal mechanical model called a 

rheological model. The rheological models consist of 

elementary units of springs, dashpots and friction 

blocks, connected in series or in parallel. 

The elementary models are: 

(i) Hookean (consisting of a single spring, with 

linear behavior, and it is assumed that stress response is 

independent of time); 

(ii) Newtonian (consisting of a single dashpot, with 

linear behavior, with a time-dependent response); 

(iii) Rigid-Plastic (consisting of a single friction 

block, with stress-strain responses proportional to the 

step function, with a time-independent response). 

Considering that stress versus strain versus time 

relationships of many materials do not usually follow 

the stress versus strain versus time pattern of 

elementary models, a combination of these models is 

required to represent the behavior of these materials. 

These models called elementary and composite 

rheological models are: 

(i) Saint-Venant model (composed by a combination 

of a spring and a friction block in series); 

(ii) Kelvin model (composed by a combination of a 

spring and a dashpot in a parallel combination with a 

viscoelastic response); 

(iii) Maxwell model (composed by a combination of 

a spring and a dashpot with a viscoelastic response). 

Concerning those materials that exhibit more 

complex behavior, the combination of elementary 

models and elementary composite models produces a 

new class of rheological models, called complex 

composite models. 

The most typical and widely used are: 

(i) Bingham model (the association in series of a 

dashpot, a spring and a friction block); 

(ii) Standard Linear model (the association of 

Maxwell model with a linear spring connected in 

parallel); 

(iii) Burgers model (the serial assembly of Maxwell 

and Kelvin models). 

Fig. 1 shows the complex compound rheological 

models. 



 
(a) Bingham model 



 
(b) Standard Linear Model 



 
(c) Burgers model 

Fig. 1  Complex composite rheological models. 
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2.3 Mathematical Representation of Creep 

Various relationships between stress and strain and 

also time are basically empirical in the technical 

literature. Most of them were established in a way to 

adjust to experimental results achieved under constant 

tension and temperature. However, the real material 

behavior has revealed that the deformation with time 

depends on the states of stresss to which material has 

been subjected in the past, and not on its maximum 

value. Therefore the creep phenomenon is affected by 

prior strain history. In light of this fact, several 

mathematical methods have been suggested to 

represent the viscoelastic behavior of materials, 

including the differential and integral forms. The 

integral form is presented in this work. A great 

advantage in using the integral representation over the 

differential one is the flexibility of representation of 

viscoelastic properties of the material derived directly 

from tests. This representation may also be used to 

describe the behavior of materials at aging parameters 

and incorporate the impacts of temperature. 

Furthermore concerning those problems in which 

temporal function of loading is very complex, the 

integral equation provides a simpler solution than the 

differential equation [7]. 

2.3.1 Creep Function 

It is accepted that, in a creep test, a step of constant 

stress ( )tH0 =  (where H is the Heaviside step 

function) is applied and the strain ( )t  is measured. 

Considering materials with linear behavior, 

deformations can be represented as follows: 

( ) ( )tJt 0 =                   (3) 

Or 

( )
( )

0

 t
tJ =                   (4) 

The function ( )tJ  is called the creep or coupling 

function and it is a property of materials. 

2.3.2 Relaxation Function 

Considering that during a relaxation test performed 

on a material with linear behavior, a deformation

( )tH0 =  is prescribed and the stress ( )t  is 

measured, it can be expressed as follows: 

( ) ( )tRt 0 =
                (5) 

Or 

( )
( )

0

 t
tR =

                 (6) 

The function R(t) is called the relaxation function. 

R(t) is a property of materials just like J(t). 

2.3.3 Integral Representation of Creep for Uniaxial 

Stress 

If a viscoelastic body with linear behavior is 

subjected to a constant stress function (t) and a finite 

derivative on the time interval of interest, representing 

the stress history, the corresponding deformation 

function can be obtained from the expression below: 

( ) ( )
( )





 dtJt

t




−= 0

            (7) 

Where: 

 = auxiliary variable; 

J(t-) = creep function. 

The expression (7) can also be represented in this 

manner: 

( ) ( ) ( )
( )

( ) 



 d

tJ
Jtt

t

 

−
−=

0
0     (8) 

accepting that J(t-) is continuous in the interval (0,t) 

and can be derived from . 

The expressions (7) and (8) are both valid 

considering the process starts at time t = 0 and the 

initial value of the voltage is null, that is, ( ) 00 = . 

Concerning the general case, with the initial value not 

equal to zero, the following expressions shall apply: 

( ) ( ) ( ) ( )
( )








dtJtJt

t




−+−= 

0
00

 (9) 

( ) ( ) ( )
( )

( ) 






d

tJ
Jtt

t

 

−
−=

0

0       (10) 



Estimation of Settlements in Shallow Foundations Based on the Theory of Linear Viscoelasticity 

 

1081 

2.4 Relations Between Creep and Relaxation 

Functions 

After studying the creep function, the expressions 

(7), (8), (9) or (10) could be used to predict stresses 

based on prescribed deformation history. However, 

determining (t) using one of the expressions 

mentioned above involves solving an integral equation 

which is expected to be mathematically much more 

complicated than direct integration. Thus we may 

write: 

( ) ( ) ( ) ( )
( )

 


−+−=

t

dtRtRt
0

00








(11) 

( ) ( ) ( )
( )

( ) 

−
−=

t

d
tR

Rtt
0

0








   (12) 

Therefore aiming to determine (t)
 
based on history 

of prescribed deformations, it is crucial to know the 

relaxation function R(t), obtained from a stress 

relaxation test under a constinuous strain. 

Once the creep and stress relaxation represent two 

aspects of the same viscoelastic behavior of materials, 

the creep and relaxation functions are therefore related, 

that is, one can predict relaxation behavior from known 

creep parameters and vice-versa. Thus, according to 

expressions (9) and (10), for (0) = 0 and (0) = 0, 

respectively, we may find for 0 = 0: 

( ) ( ) ( )





 dtJt

t




−= 0

      (13) 

( ) ( ) ( )





 dtRt

t




−= 0

      (14) 

Using Laplace transform in the previous equations 

and eliminating stress-strain transformations and 

performing then the inverse transform, we can get: 

( ) ( ) ( ) ( ) tdJtRdRtJ
tt

=−=−  
00  (15) 

The expression (15) represents the relations between 

the creep and relaxation functions. 

2.5 The Elastic-Viscoelastic Correspondence 

Principle 

If a solution to an elasticity problem is known, the 

Laplace transform of the solution corresponding to the 

viscoelastic problem can be obtained by replacing the 

elastic constants E and 
E


 by ( )s

Js E
ˆ

1
 and ( )s

Js 
ˆ

1
, 

respectively. If the problem is described in terms G

and K  these constants should be replaced by ( )s
Js G
ˆ

1
 

e ( )s
Js K
ˆ

1
. 

Creep functions JE(t), JG(t) and JK(t) can be defined 

as: 

Simple traction or compression - axial deformation: 

( )
( ) ( )

( ) 



 d

tJ

E

t
t i

t
Ei

i  

−
−=

0
   (16) 

Simple traction or compression-transverse 

deformation: 

( ) ( ) ( )
( )

( ) 






  d

tJ
t

E
tt

t

iiKj  

−
+−==

0
(17) 

Pure shear-shear deformation: 

( ) ( )
( ) 




 d

tJ

G

t
ij

t
Gij

ij  

−
−=

0 2

1

2     (18) 

Hydrostatic compression-volumetric deformation: 

( )
( ) ( )

( ) 



 d

tJ

K

t
t kk

t
KKK

KK  

−
−=

0 3

1

3   (19) 

Naturally, the viscoelastic solution is thereafter 

obtained by an inverse Laplace transform. 

2.6 The Elastic-Viscoelastic Correspondence 

Theorems 

According to the first Theorem of Correspondence, 

the internal forces (tensions or internal forces at the 

sections) caused by imposed load are not modified by 

creep. At any time t the internal forces act upon a body 
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with the same geometric and binding features, with the 

same loads, but possessing elasticity. Conversely, 

deformations and displacements showed increases with 

time following the laws of creep. 

The second Theorem of Correspondence shows that 

the deformations and displacements due to imposed 

deformations are not modified by creep. However the 

internal efforts and hyperstatic reactions originting 

from these imposed deformations decrease over time, 

according to the laws of relaxation. 

3. Example of Application 

A methodology is developed to estimate the 

settlement of a spread footing underneath the center of 

compression load area applying the Theory of Linear 

Viscoelasticity (TLV). To achieve this, the 

Elastic-Viscoelastic Correspondence Principle (EVCP) 

is applied as follows: if a solution to an elasticity 

problem is known, the Laplace transform of the 

solution corresponding to the viscoelastic problem can 

be obtained by replacing the elastic constants E  and 

E


  by ( )

^1
EJ s

s
 and ( )

^1
J s

s


, respectively, where 

the creep functions and their respective Laplace 

transforms are defined by the expressions: 

𝐽𝐸(𝑡) =
1

𝐸0
+ 𝐶(𝑡); 𝐽𝐸̂(𝑠) =

1

𝐸0𝑠
+ 𝐶̂(𝑠)      (20) 

𝐽𝑉(𝑡) =
𝜐0

𝐸0
+ 𝜇(𝑡); 𝐽𝐸̂(𝑠) =

𝜐0

𝐸0𝑠
+ 𝜇 ̂(𝑠)       (21) 

We noticed that the solution to the viscoelastic 

problem involves the inverse Laplace transform. Yet 

this Principle is only valid if the boundary between the 

surface on which the external load is applied and the 

surface where prescribed displacements occur is held 

constant over time, although loads and displacements 

may vary. 

The steps leading to the equation for solving the 

problem are then presented. 

The rheological model used in this study is 

represented by the association in series of the Hookean 

model and the Kelvin model, as shown in Fig. 2. 

 
Fig.2  Rheological model adopted. 

We highlight some solutions of the Elasticity Theory 

that allow the estimation of spread footing for a number 

of cases. For example, the settlements of a spread 

footing underneath the center of compression load area 

can be predicted by: 

21
r qBI

E

 −
=  

 
               (22) 

Where: 

q = average applied stress; 

B = smaller footing width; 

V = Poisson’s ratio; 

E = elastic modulus of soil; 

s d hI I I I=
 

Is= shape factor of the footing and the stiffness; 

Id = depth factor; 

Ih = thickness factor of the compressible layer. 

From the EVCP, we remark: 
1

E
from the instant 

solution → 
1

𝐸0
+ 𝑠𝐶̂(𝑠)  in the linear viscoelastic 

solution and 
E


→ 

𝜈0

𝐸0
+ 𝑠𝜇̂(𝑠) , respectively. Thus, 

1

E

E





 
 
 =
 
 
 

→ 
[

𝜈0
𝐸0

+𝑠𝜇̂(𝑠)]

1

𝐸0
+𝑠𝐶̂(𝑠)

. Where the symbol → 

represents corresponds to. 

𝜔(𝑡) = 2𝐶(𝑡) + 2𝜇(𝑡)               (23) 

𝜔̂(𝑠) = 2𝐶̂(𝑠) + 2𝜇̂(𝑠)              (24) 

Hooke’s law of elasticity is used for volumetric 

deformations with: 

 

ka

kb n
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( )
0

1
KJ t

K
=                       (25) 

From TLV: 

( ) ( ) ( )3 2k EJ t J t J t= −      (26) 

Developing (26) and applying the respective Laplace 

transform, this result and the equation (24) generate the 

following system: 

𝐶̂(𝑠) − 2𝜇̂(𝑠) = 𝜔̂(𝑠)        (27) 

2𝐶̂(𝑠) + 2𝜇̂(𝑠) = 𝐶̂(𝑠)       (28) 

Whose roots are: 

𝐶̂(𝑠) =
𝜔̂(𝑠)

3
               (29) 

𝜇̂(𝑠) =
𝜔(𝑠)

6
           (30) 

So: 

𝜈 →  
6𝜈0+𝐸0𝑠𝜔̂(𝑠)

6+2𝐸0𝑠𝜔̂(𝑠)
          (31) 

The creep function in shear can be written as: 

( )
0

1
GJ t

G
= +         (32) 

Where: 

( )
1

1

Gt

t e
G



− 
= − 

 
 

     (33) 

( )
1

1

Gt

t e
G



− 
= − 

 
 

    (34) 

𝜂 = coefficient of viscosity. 

Therefore we can write: 

( )
( )

( )1 2 1
1

2 2
r qBI qBI

E G

 


+ −
= − =    (35) 

( )

( )

( )

0

0

0 00

2 1
6

1 1
1

4 1
6

2

G

G s
qBI

GG G s

G s
r s

s










+ 
+   + + − 

++    + + =   

(36) 

Performing the reverse transform and developing it, 

we obtain: 

( )
( ) ( )

( )( )

3

3 3

0

3

20 8

t
C

C
D E e

r t qBI A
C F G G





 
 
 

 
  + 

  = + 
+ + 

 
 

 (37) 

Where: 

( )

( )
0 0

0

7 5 1 1

10 4 4

Gt

A e
G G

 



 −
 
 

− + +
= −

+
; 

( )05 2C G G= − −
; 

( ) ( )0 020 2 16 2D G C G C = + − −
; 

( )2 2 2

0 014 10 2 1E G G G = − + +
; 

( )
22

01664
4

3 3

GG
F G C


= + +

. 

A footing width of 1.2 m and average applied stress 

174.2 kN / m² were adopted to illustrate it. 

It is important to mention that the parameter for 

coefficient of viscosity () of the model was accepted 

at value 1000 kPa/day [8]. The average value 10615 

kN/m² was used for the transverse elastic modulus (G0). 

This value was adopted based on Poisson’s ratio (V0) 

equals 0.4 and average elastic modulus value (E) for 

soil equals 27600 kN/m². 

Fig. 3 shows settlement evolution estimated by TLV 

over time. 

Settlement growth can be observed over time based 

on Fig. 3. After about 300 days, this settlement shows a 

tendency for stabilization. Concerning the data, the 

estimated settlement from the TVL reached 

approximately 6.4 mm in 1043 days. 
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Fig. 3  Settlement evolution estimated by TLV over time. 

4. Conclusions 

The following conclusions are drawn: 

(i) The proposed methodology allows the estimation 

of settlement over time for a spread footing underneath 

the center of compression load area; 

(ii) Settlement growth is observed over time based 

on the application example, the growth of settlement is 

observed over time. The estimated values are always 

very small, reaching 6.4 mm in 1043 days. This value is 

directly related to the footing width, average applied 

stress, coefficient of viscosity, transverse elastic 

modulus, Poisson’s coefficient and soil elastic 

modulus; 

(iii) After about 300 days settlement tends to 

stabilize. 
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