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Abstract: The growth of electric power systems due to the increase in demand, generates the need to have a greater number of 

interconnections between the various generation - load systems, because they allow to serve users with a lower operating cost, attend 

Sudden load variations, purchase and sale of energy, but these increases, cause a decrease in the margins of chargeability and decrease 

in the voltage levels in the bars of a power system, resulting in the risk of bringing the system to Tension instability. These decreases 

can also be produced by the limited injection of reactive power, lack of use of compensation elements, etc. An important aspect of the 

stability of tension is that it is a non-linear phenomenon, which is why computational methods and tools are used to control the tension 

in the bars, by means of the injection of reactive power. Therefore, a computational tool that expands the Jacobian matrix will be 

implemented in order to increase a new state variable, within the Jacobian matrix, which helps to improve tension levels in the face of 

increased demand 
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1. Introduction  

The growth of Electric Power Systems due to 

increases in demand, gives the need to have systems 

that offer greater reliability and lower operating costs, 

so it is necessary, increasing interconnections, in order 

to satisfy the demand. 

Under this context, interconnected systems are 

advantageous, because they allow electric power 

generation companies to meet the demand, at peak 

hours, with a smaller number of generating machines 

that operate in a vacuum (rotating reserve), with the 

purpose of attending sudden loads, purchase and sale of 

energy, etc. And have a better use of the resources used 

for the generation of electrical energy (hydraulic, 

thermal, combined cycle, etc.). 

These interconnections also generate some 

inconveniences in practice, such as an increase in the 

sizing of the systems and a very complex coordination 
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of operation, causing short-circuit currents to increase 

significantly. From this point of view, we observe that 

a detailed planning of system operation is necessary for 

its performance to be compatible with market 

requirements. It also becomes necessary for its 

operation, to have a detailed knowledge of its 

protection and to have tools that facilitate a quick 

analysis of its conditions of electromechanical stability 

and safety of tension in permanent regime. 

Within this context, the calculation of power flow, 

constitutes the basis for the solution of various 

problems, referring to the operations of electrical 

power systems (short circuit analysis, reliability, 

optimal operations, Hydrothermal dispatch, stationary 

stability, etc.). 

To perform the calculation of power flow, it is 

necessary to use numerical methods, due to the 

existence of non-linear equations present in the 

calculation of active and reactive powers, which are 

present in the transmission elements (transmission 

lines, transformers, etc.). 
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Currently, various power flow calculation programs 

use various variations of the Newton Raphson method 

[1-3]. 

In spite of requiring more complex algorithms for its 

implementation, Newton Raphson’s method presents a 

quite satisfactory computational performance. 

A very important feature of this method is its 

numerical robustness, as well as a reduced number of 

iterations, which allow its use for difficult-to-solve 

systems. 

For this method to be appropriate, for the calculation 

of power flow with voltage control, it is necessary to 

introduce mathematical models, which allow to 

represent control devices, whose main function is to 

present electrical systems, more in line with reality, in 

order to improve the tension levels (tension module) in 

the bars and thus be able to avoid voltage collapses and 

that the system works within the safety margins 

(stability region). 

2. Materials and Methods 

2.1 Power Flows 

The calculation of power flow is the most basic 

analysis tool used to know the steady-state operation of 

an electric power system. It is defined as the solution 

process that provides the steady-state voltages in all the 

nodes that make up the electrical network under 

analysis and based on which the active and reactive 

power flows injected into terminals of each 

transmission element under the calculation are 

calculated assumption of known values of power 

generated and consumed. 

The way to obtain the stationary operation point of a 

power grid based on an analysis of power flows, is 

determining that the generation power, the load power 

and the power that is exchanged through the 

transmission lines must add zero on each of the nodes 

of the network (this applies to active power and 

reactive power). This can be expressed mathematically 

by a group of equations: 

∆𝑃𝑖 = 𝑃𝐺𝑖 − 𝑃𝐿𝑖 − 𝑃𝑖 = 0           (1) 

∆𝑄𝑖 = 𝑄𝐺𝑖 − 𝑄𝐿𝑖 − 𝑄𝑖 = 0          (2) 

Where: 

𝑃𝐺𝑖 and 𝑄𝐺𝑖 they are the powers of injected by the 

generator connected in node i of the network. 

𝑃𝐿𝑖  and 𝑄𝐿𝑖  they are the powers extracted by the 

load connected in node i of the network. 

𝑃𝑖  and 𝑄𝑖  are the powers that flow through the 

transmission elements and are calculated according to 

Eqs. (3) and (4). 

𝑃𝑖 = 𝑉𝑖
2𝐺𝑖𝑖 + 𝑉𝑖 ∑𝑉𝑗(

𝑛

𝑗=1

𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)…

+ 𝐵𝑖𝑗𝑠𝑒𝑛(𝜃𝑖 − 𝜃𝑗) )    

𝑄𝑖 = −𝑉𝑖
2𝐵𝑖𝑖 + 𝑉𝑖 ∑𝑉𝑗(

𝑛

𝑗=1

𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)…

− 𝐵𝑖𝑗𝑠𝑒𝑛(𝜃𝑖 − 𝜃𝑗) )   

The subscripts i, j represents the connection nodes of 

the transmission element. 

Due to the obvious nonlinearity of Eqs. (3) and (4) 

the use of solution methods is necessary, for the 

solution of the Power Flow problem. There are several 

methods among which Gauss-Seidell, 

Newton-Raphson, Quick Disengagement, etc. stand 

out. 

The Newton Raphson method has been used as an 

efficient method in terms of its characteristics of 

convergence speed, accuracy and memory 

requirements. 

In order to apply the Newton Raphson method, it is 

necessary to have a symmetric system of equations, 

that is, the same number of unknowns and equations. In 

each node of the network two variables are specified 

and according to those specified variables the node is 

classified according to Table 1. 
 

Table 1  Units for magnetic properties. 

Node Type 
Specified 

Variables 
Calculated Variables 

Node Swing ІVІ y θ P y Q 

Node PV ІVІ y P Q y θ 

Node PQ P y Q ІVІ y θ 
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Once the appropriate variables of the Power Flow 

equations have been specified, it can be solved, 

linearizing around the initial conditions ( 𝑃0, 𝑄0 ), 

Where do you get: 

[
∆𝑃
∆𝑄

]
𝑘

= [ 

𝑑𝑷

𝑑𝜃

𝑑𝑷

𝑑𝑉
𝑑𝑸

𝑑𝜃

𝑑𝑸

𝑑𝑉

]

𝑘

.    [
∆𝜃
∆𝑉

]
𝑘

      (5) 

It can also be represented as: 

[
∆𝑃
∆𝑄

]
𝑘

= [ 𝐽 𝑎𝑐]
𝑘 . [

∆𝜃
∆𝑉

]
𝑘

        (6) 

Where: 

𝐽𝑎𝑐 It is known as the Jacobian matrix and contains 

the partial derivatives of active and reactive power with 

respect to the magnitudes of voltages and angles. 

𝑘 Represents the iteration of the solution process. 

2.2 Shunt Device Representation in Power Flow 

Problems 

A flexible representation of Shunt devices in Power 

Flows, is obtained, increasing the original system of 

power equations, reached from Eqs. 3 and 4, this 

representation corresponds to a form closer to reality. 

The generic way of linearizing this augmented 

system of equations is solved in each iteration of 

the Newton Raphson method, which is shown 

through Eq. (7) 

[
∆𝑷
∆𝑸
∆𝒚

] =

[
 
 
 
 
𝑑𝑷

𝑑𝜃

𝑑𝑷

𝑑𝑉

𝑑𝑷

𝑑𝑥
𝑑𝑸

𝑑𝜃
𝑑𝒚

𝑑𝜃

𝑑𝑸

𝑑𝑉

𝑑𝑸

𝑑𝑥
𝑑𝒚

𝑑𝑉

𝑑𝒚

𝑑𝑥]
 
 
 
 

. [
∆𝜃
∆𝑉
∆𝑥

]       (7) 

In this equation the vector ∆𝒚 represents the error 

vector of the additional equations that model the 

control equipment. The vector ∆𝒙 It is formed by the 

state variables incorporated into the power flow 

problem, at the end of each iteration the state variables 

are updated as follows: 

𝒙(𝑘+1) = 𝒙(𝑘) + ∆𝒙(𝑘)        (8) 

Eq. (7) can be conveniently considered as follows: 

[
∆𝑤
∆𝑦

] = [
𝐽𝑎𝑐 𝐽𝑤𝑥

𝐽𝑦𝑢 𝐽𝑦𝑥
] . [

∆𝑢
∆𝑥

]         (9) 

Where vectors ∆𝑣 and ∆𝑢 are given by: 

[∆𝑤] = [
∆𝑃
∆𝑄

]             (10) 

[∆𝑢] = [
∆𝜃
∆𝑉

]              (11) 

The matrix 𝐽𝑎𝑐, in Eq. (9) it represents the Jacobian 

matrix of traditional formulation of Newton Raphson’s 

method, 𝐽𝑤𝑥  contains those derived from the power 

equations in relation to the new problem state variables. 

The blocks 𝐽𝑦𝑢  y 𝐽𝑦𝑥  represents those derived from 

the equations that model shunt devices in relation to the 

original and additional state variables respectively. The 

matrix 𝐽 It is called Expanded Jacobian Matrix 

𝐽 = [
𝐽𝑎𝑐 𝐽𝑤𝑥

𝐽𝑦𝑢 𝐽𝑦𝑥
]             (12) 

This expanded formulation allows great ease of 

incorporation of Shunt devices, taking into account that 

the matrix 𝐽𝑎𝑐 is preserved.  

2.3 Sensitivity Analysis 

It is well known that the problems of voltage 

stability in power systems are associated with the 

behavior of reactive power-system voltage, so some 

techniques based on the analysis of operating 

conditions in stable (or static) state such as in Refs. [1, 

4]. 

The expanded Jacobian matrix will be used, for the 

determination of the sensitivity which relates the 

behavior of the variations of: 

 The power injected into the nodes and their 

voltages. 

 Remote voltage control with the use of Shunt 

compensators. 

It is also important to mention that an injection of 

reactive power by Shunt compensators improves the 

performance of the system during the operation, 

keeping the module of the voltage levels of the bars as 

close to their nominal value, thus reducing the current 

on transmission lines and therefore reducing losses and 

contributing to an improvement in the safety margin of 

the system. 
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These injections of reactive power, obtains a family 

of P-V curves (Fig. 1), expanding the load margin of 

the electric power system, so it is considered an 

alternative solution, within the technology of FACTS 

devices. 

 

 

Fig. 1  Family of P-V Curves, by injection of reactive power. 

 

2.4 Sensitivity QV 

The QV sensitivity analysis will be determined from 

the matrix “ 𝐽𝑎𝑐 ” which represents the traditional 

Jacobian matrix. So, making 𝛥𝑃 = 0, an expression is 

reached between ΔQ y ΔV. 

[
0

∆𝑄
] = [

𝐽𝑃𝜃 𝐽𝑃𝑉

𝐽𝑄𝜃 𝐽𝑄𝑉
] . [

∆𝜃
∆𝑉

]       (13) 

∆𝑄 = [−𝐽𝑄𝜃 ∗ 𝐽𝑃𝜃
−1 ∗ 𝐽𝑃𝑉 + 𝐽𝑄𝑉] ∆𝑉  (14) 

∆𝑄 = 𝐽𝑅 ∆𝑉         𝑦          ∆𝑉 = 𝐽𝑅
−1 ∆𝑄    (15) 

Where: 

𝐽𝑅 = [−𝐽𝑄𝜃 ∗ 𝐽𝑃𝜃
−1 ∗ 𝐽𝑃𝑉 + 𝐽𝑄𝑉], represents a Reduced 

Jacobian matrix. 

As observed 𝐽𝑅 is the matrix that directly relates the 

variations in magnitude of the voltage with the 

variations in magnitude of the reactive power injected 

into each node (gradients). 

2.5 Values Analysis and Own Vectors 

The modal analysis corresponds to the analysis of 

values and vectors characteristic of the sensitivity 

matrix 𝐽𝑅 and 𝐽𝑆𝐶. In this way the particular behavior 

of each sensitivity mode is characterized and through 

the vector analysis the influence of reactive load 

injections on certain nodes can be determined, whose 

analysis is known as nodal participation factors. 

From this method, modal sensitivities are 

determined, obtained from the diagonalization process 

of 𝐽𝑅 and 𝐽𝑆𝐶, as follows 

Para la Matriz JR 

𝐽𝑅 = 𝜉 ∗ 𝛬 ∗ 𝜂               (16) 

Where: 

ξ   = Own vector matrices rights of JR   

η  = Left own vector matrices of JR   

Λ  = Diagonal matrices of own values of JR   

Now the voltage increases in the nodes are given by: 

∆𝑉 = 𝜉 ∗  𝛬−1 ∗  𝜂  ∆𝑄 =  ∑
𝜉𝑖∗𝜂𝑖

𝜆𝑖

𝑚
𝑖=1  ∆𝑄  (17) 

Being ξi  the i – esima column of ξ  , ηi  the i – 

esima row of η, and λi is the row and column i of  Λ. 
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Since ξ−1 = η, the equation 17 can be written in the 

form: 

𝜂 ∗ ∆𝑉 = 𝛬−1 ∗ 𝜂  ∆𝑄    ⇒      𝕧 =  𝛬−1 ∗ 𝕢   (18) 

Where 𝕧 and 𝕢 are the modal variables of voltage 

and reactive power, respectively related: 

 𝕧𝑖 =
𝕢𝑖   

𝜆𝑖
                     (19) 

For the Matrix  JSC 

𝐽𝑆𝐶 = 𝜉′ ∗  𝛬′ ∗  𝜂′             (20) 

Where: 

ξ′ = Own vector matrices rights of JSC 

η′= Left own vector matrices of JSC 

Λ′= Diagonal matrices of own values of  JSC 

Now the voltage increases in the nodes is given by: 

∆𝑉 = 𝜉′ ∗   𝛬′ ∗  𝜂′ ∆𝑏𝑠ℎ          (21) 

From equation 21, equation 22 is achieved 

𝜂′ ∗ ∆𝑉 = 𝛬′ ∗ 𝜂′ ∆𝑏𝑠ℎ   ,    𝕧′ = 𝛬′ ∗ 𝕓𝑠ℎ   (22) 

Where 𝕧′ and 𝕓sh they are the modal variables of 

voltage and of the shunt device. 

In equilibrium conditions always the values λi they 

are positive; however, the most critical are those that 

approach the voltage stability frontier, that is when the 

modal sensitivity is reversed (negative); in other words, 

the critical modes are those that approach 0. 

On the other hand, the relative importance of each 

node (𝑘)  in modal dynamics or sensitivity (𝑖)  is 

given by the nodal participation factor (𝑝𝑘𝑖) defined 

by: 

𝑝𝑘𝑖 = 𝜉𝑘𝑖 ∗  𝜂 𝑘𝑖               (23) 

Since the resulting participation factors are 

normalized values whose sum over all the nodes for a 

particular mode is equal to 1, the greater the value of 

the participation factor, the greater the influence of 

node k on the sensitivity of mode i. 

2.6 Singular Decomposition Sensitivity Analysis 

This method decomposes the Jacobian matrix into 

four sub-matrices, which represent the partial 

derivatives of the active and reactive powers according 

to the state variables, with a Δ𝑃 = 0, because this 

error vector is less than the tolerance margin, in 

addition to the strong relationship between the 

reactive power and the voltage module of the power 

system bars. 

[
0

∆𝑄
] = [

𝐽𝑃𝜃 0
0 𝐽𝑄𝑉

] [
∆𝜃
∆𝑉

]        (24) 

This new Jacobian matrix can be decomposed as 

indicated in Eq. (25). 

[
∆𝜃
∆𝑉

] = 𝑈Σ−1𝑉𝑇 [
∆𝑃
∆𝑄

]          (25) 

The greatest value of Σ−1 occurs for the inverse of 

the minimum singular value of the matrix. The 

following relation for the minimum singular value and 

the corresponding singular vectors, obtained from 

equation 25 is of study interest. 

𝑣𝑛
𝑇 [

∆𝜃
∆𝑉

] = 𝜎𝑛
−1𝑢𝑛

𝑇 [
∆𝑃
∆𝑄

]         (26) 

The inverse of the minimum singular value 𝜎𝑛
−1 , 

from the point of view of small disturbances, it 

indicates the largest change in state variables. 

[
∆𝑃
∆𝑄

] = 𝑢𝑛             (27) 

Where 𝑢𝑛 it’s the last column of 𝑈, so: 

[
∆𝑃
∆𝑄

] = 𝜎𝑛
−1𝑣𝑛          (28) 

Where 𝑣𝑛 it’s the last column of 𝑉. From all of the 

above, the following interpretations can be made for 

the minimum singular value and the corresponding 

right and left singular vectors. 

3. Results  

To show the importance of the proposed methods, 

the 14-bar IEEE test system will be used for voltage 

control. 

For this system, two capacitor banks were connected 

in bars 5 and 14 of the test system, in order to perform a 

local and remote control of the voltages in bars 4 and 

14, at desired voltage levels of 1,014 pu and 1.0512 pu. 

According to Fig. 3, it is observed that the voltage 

levels of all the bars increased (with respect to their 

magnitude) as well as the tensions in the control bars, at 
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the desired values, due to the injection of reactive 

power, by Shunt devices placed on bars 5 and 14. 

Due to the connection of the voltage control devices, 

it resulted in the increase of two new state variables and 

two new equations for the power flow solution, which 

are necessary requirements for obtaining the operating 

point of the system power, so the process proves to be 

effective because the number of iterations came to 

converge in a few iterations (four iterations), as shown 

in Fig. 4. 

Thanks to the calculation of the eigenvalues and 

singular values we can determine, that those bars that 

have the minimum value (Fig. 5), are those bars that are 

closer to the instability of tension, being for our case of 

study the bars 11, 13 and 14 closest to instability 

because they have roots equal to 2.7012; 5,564 and 

7,666, present in the reduced Jacobian matrix. 
 

 
Fig. 2  Uniform diagram of the IEEE system - 14 bars. 
 

 
Fig. 3  Voltage levels on the bars, IEEE system - 14 bars. 

 

 
Fig. 4  Number of iterations of the proposed method, for 

the IEEE system - 14 bars. 
 

 
Fig. 5  Own values and singular values, of the IEEE system 

- 14 bars. 
 

Another calculation, to determine those bars close to 

voltage instability, is by calculating the participation 

factors, obtained from the decomposition of the right 

and left vectors, for a minimum root (minimum own 

value and minimum singular value), which shows the 

most extreme operation of the system. 

In addition, in Fig. 6, it shows that the bars closest to 

instability are presented in bars 14, 10, 9 and 11 which 

show that these bars are prone to reactive power 

injection, in order to remain in the stable region of the 

system. 

From the sensitivity calculation shown in Fig. 7, we 

can see that the bars 14, 10, 11 and 12 are the most 

sensitive, given variations of the tensions, because they 

would also indicate that these bars are prone, for the 

injection of reactive power. 



Voltage Control, By Reactive Power Injection 

 

714 

 
Fig. 6  Participation factors for minimum own value and 

minimum singular value. 
 

 
Fig. 7  Sensitivity analysis by modal analysis and singular 

decomposition methods. 
 

From the methods shown, we can conclude that 

these methods offer important and similar information, 

in the detection of critical bars, that reactive power 

must be injected into the system, so it should be 

considered a control area, prone to the connection of 

devices shunt, which will cause the system to be within 

the region of tension stability. 

4. Discussion and Conclusions 

These equations correspond to the Linearized 

representation of the power system around the 

operating point under analysis. 

The expanded Jacobian matrix can be used for local 

and remote voltage control, which would mean an 

increase in the number of equations, which will be used, 

to determine the calculation of Power Flow. 

The method proves to be effective, due to the 

minimum number of iterations that it presents in the 

convergence process, which would mean that it does 

not require the performance of multiple tests in order to 

obtain the desired voltage modules in the bars, because 

the Expanded Jacobian matrix method, adjust the 

desired stress values. 

The system is stable in voltage, if all the eigenvalues 

and all the singular values are positive, getting away 

from the instability of voltage due to an increase by 

injection of reactive power. 

The proposed methodology, together with the 

techniques of power flow, modal analysis and singular 

values are a good alternative for the evaluation of the 

stability of tension, in steady state. 
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