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Abstract: Minimizing construction waste can help achieve the environmental, economic, and social benefits of sustainable 
construction. Types of waste may include those known as non-value adding activities. Studies on the effects of construction waste on 
project performance are important to enable mitigation actions. Most of such studies, however, are based on perception surveys. This 
has led to problems in deriving valid information using parametric methods during the statistical analysis of the response. These 
problems are mainly related to the assumptions concerning the underlying distribution and the categorical nature of the data. This paper 
explores a class of nonparametric methods for analyzing survey data concerning the effects of construction waste on project 
performance. It includes a number of nonparametric tests and post-hoc procedures for repeated measures. Data concerning seven types 
of construction waste on the generation of material waste from past study are used for this purpose. The results show that consistent 
outcomes and inferences can be made using different nonparametric methods. A recommendation on which nonparametric methods to 
use is given. 
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1. Introduction 

Three dimensions of sustainable construction are 

environmental, economic, and social dimensions [1, 2]. 

Minimizing construction waste can potentially help 

achieve sustainability–that is through the improvement 

of project performance. By construction waste it means 

construction activities that consume resources and 

produce no values. They include the following seven 

activities: overproduction, waiting, transport, extra 

processing, inventory, motion, and defects [3]. 

Studies that reveal construction waste contributions 

to material waste generation have been reported [4-6]. 

Other studies have also been carried out to establish 

how types of construction waste are related to client 

decisions in construction projects in the Indonesian 

Provinces of South and East Kalimantan [7] and their 

effects on project lateness [8]. These studies rely on 
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surveys of perception. Also, the requirement is that the 

respondents have to have a certain level of construction 

experience and knowledge. 

This creates two problems concerning the validity of 

information derived from the statistical analysis of the 

data. Firstly, the limited population of respondents 

having the above-mentioned qualification usually does 

not allow a sufficiently large size of data for estimation 

purposes. Since statistical modelling is mostly based on 

normality or asymptotic normality for parameter 

estimation, a small sample size easily leads to large 

errors of estimation. Secondly, the categorical nature of 

responses in perception surveys means that those 

responses are qualitative [9] and may not necessarily 

represent any underlying continuous variables. Unlike 

their parametric counterparts, nonparametric analysis 

techniques are usually insensitive to such limitations. 

As much as it is important to understand how 

construction waste affects project performance and 

construction sustainability as a whole, it is also critical 
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to ensure that mitigation actions for improving the 

performance are taken based on valid statistical 

inference. For this particular reason, the purpose of this 

paper is to give a recommendation on which 

nonparametric methods that can be used for comparing 

the effects of various types of construction waste. 

2. Literature Review 

2.1 Construction Waste and Project Performance 

Construction waste can be defined as construction 

activities that consume resources and produce no 

values, which in particular include overproduction, 

waiting, transport, extra processing, inventory, motion, 

and defects [3]. These are also known as non-value 

adding activities. A study in the Indonesian Provinces 

of South and Central Kalimantan [8] reveals that the 

majority of these types of waste contribute to late 

project completion. There is also an overwhelmingly 

apparent connection between these types of waste and 

project performance if the latter is measured in terms of 

the amount of material waste generated during 

construction [4-6]. The obvious conclusion is that 

construction waste contributes significantly to material 

waste generation. 

A definition of construction material is given by [10]. 

It is any form of material on the site apart from earth 

material that cannot be used for the purpose of the 

project and has to be removed from the site or used for 

other purposes within the site. Produced in various 

types of construction work from demolition to 

renovation and new building projects [11], 

construction material waste contributes an estimated 35 

percent of the entire waste produced around the world 

[12]. It is, however, quite surprising that among 

relatively many research studies on what generates 

construction material waste [4-6, 12-17] very few have 

attempted to look at the significant roles of non-value 

adding activities. 

2.2 Nonparametric Methods for Repeated Measures 

Data from studies of material waste or the effects of 

construction waste on project performance as 

mentioned above are usually used to compare effects 

from different waste sources and to discover several 

sources that contribute the most. Another use is for 

prediction purposes. In this case it requires that a model 

be built and tested. If it is suspected that there are some 

underlying and unobservable factors behind the 

sources and that the relationships between these factors 

are to be investigated, then a structural equation model 

(SEM) may be taken into consideration [18]. 

Whichever intended purpose the data are gathered for, 

the categorical nature of responses and the usually 

small sample size make the data relatively 

incompatible with parametric analysis methods. 

In Ref. [4], for instance, perception of the 

respondents is obtained by asking them to give a score 

to each of predefined material waste sources using an 

ordinal scale. Here, a score is given as a measure of the 

contribution of the corresponding source to the 

generation of material waste. The score mean for each 

of the sources is computed as if the corresponding 

responses are continuous values. The resulting means 

are then used to rank the sources. This is not an 

appropriate use of sample mean. This statistic is 

meaningless if the sample is taken by observing a 

discrete variable. Also, unlike its median, the sample 

mean is too sensitive to outliers, especially if the size is 

small. A similar treatment of data is found in Ref. [5]. 

A regression model is also developed in Ref. [12]. Any 

parametric tests on the model may not be valid if, for 

instance, the assumption of normality is required for 

the residuals since the sample size may not be large 

enough for that purpose. This paper, however, focuses 

on repeated measures of effects only. 

When it comes to comparing effects of several 

different treatments (such as different material waste 

sources), a one-way analysis of variance (ANOVA) 

with a repeated measures design or a similar model 

followed by some post-hoc tests is perhaps the simplest 

way to perform. ANOVA, however, assumes that the 

measurement errors are independently and normally 
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distributed. Consequently, it means that the response 

values correspond to an underlying continuous variable. 

It also assumes that a common variance is shared 

between those different treatments (this is known as 

homoscedasticity). If any of these assumptions is 

violated, then the analysis results are not valid. A 

nonparametric alternative to this type of ANOVA, 

where the same respondents rate different sources of 

waste, is the Friedman test [19]. This is actually a 

nonparametric test for a randomized block design, and 

a repeated measures design is basically a randomized 

block one. 

The table format for this design is shown in Table 1. 

In that table, the score by the i-th respondent or block 

given as a response to the j-th treatment is replaced by 

its rank, rij, where i = 1, …, n, j = 1, …, k, and n and k 

are the number of respondents or blocks and the 

number of treatments, respectively. The ranks are 

obtained within each block by arranging the scores of 

all treatments in that block in an increasing order. The 

position of a score in the resulting order is its rank. 

Hence, for the i-th respondent or block, rij  [1, k]. A 

treatment, for instance, may be used to represent a 

source of material waste or a type of construction waste. 

It is assumed throughout this paper that the responses 

are given as nonnegative categorical values in an 

ordinal scale and a higher score of response 

corresponds to a stronger effect. 
 

Table 1  Table Format for repeated measures. 

Respondent/ 
block 

Treatments 

1 2 … j … k 

1 r11 r12 … r1j … r1k

2 r21 r22 … r2j … r2k
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where Rj is the sum of ranks in the j-th treatment and 

tj(r) is the number of scores having the same rank r due 

to that treatment. A significant difference between the 

treatments corresponds to a significantly large QF value. 

A significant test can be based on an exact distribution 

of QF as in Ref. [19] for k = 3 and n  8, and k = 4 and n 

 4. For other values of k and n, the test can use a 

chi-square distribution with k–1 degrees of freedom as 

an approximate distribution of QF. 

A modified version of this statistic as suggested by 

Iman and Davenport [20] is given as 

F
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This statistic follows an F distribution with (k–1) and 

(k–1)(n–1) degrees of freedom. 

Another approach, the rank transformation suggests 

the use of ANOVA parametrically on the ranks of the 

scores [21]. The ranks are determined globally across 

all blocks and treatments, they are also known as RT-1 

type ranks. This ANOVA with rank transform (or 

ANOVA on ranks) is basically a parametric test 

applied on RT-1 type ranks. The corresponding test 

statistic is 
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which follows an F distribution with (k–1) and 

(k–1)(n–1) degrees of freedom, where respectively, .ir , 

jr. , and ..r  are the rank average in the i-th block, the 

j-th treatment, and across all blocks and treatments. 

The above-mentioned tests do not consider the 

spread of scores within different treatments, while 
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responses belonging to some groups may be more 

homogeneous than others. Taking this spread of values 

into consideration can be done by assigning weights to 

the treatments as in the Quade test [23]. The 

corresponding test statistic is given by 

  Akkknnn
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which follows an F distribution with (k–1) and 

(k–1)(n–1) degrees of freedom, where 
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n, k, and rij are as before, and 
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which is known as the weighted adjusted-rank. The 

value of wi is the weight assigned to the i-th block. 

Notice how rij is adjusted before weighted. It is actually 

the i-th block’s adjusted rank relative to other blocks. 

These ranks of blocks are determined based on the 

range of the original scores within each of them, that is, 

the difference between the maximum and the minimum 

of the scores. Arranging these range values in an 

increasing order reveals wi’s for i = 1, …, n. 

An important criterion in selecting a test is its power. 

The power of a test is the probability that the test 

correctly classifies a result as not significant. García et 

al. [24] conducted a series of experimental studies to 

measure the power of several tests for repeated 

measures. According to the results, Quade test tends to 

be more powerful than Friedman test. 

If the responses (or the residuals) are normally and 

independently distributed, then ANOVA is the most 

powerful. Other tests for repeated measures are usually 

compared to a corresponding ANOVA model in terms 

of power. Given the same data, the power of a 

nonparametric test for repeated measures relative to a 

corresponding ANOVA model is given as its 

asymptotic relative efficiency (ARE). For Friedman test, 

this ARE is a function of the number of treatments (k) 

as follows [25] 

1
955.0
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          (7) 
For k = 7, for instance, Friedman test is 83.56 percent 

as powerful as ANOVA with randomized block design. 

2.3 Post Hoc Tests 

If a significant difference is detected between the 

treatments, a post hoc test is usually carried out to 

compare every two treatments with each other such that 

all treatments can be put in an order of increasing effect. 

Paired comparison such as this is what should have 

been performed in Ref. [4] instead of the ranking of the 

score means. Further, a treatment with the lowest rank 

sum (or the lowest weighted adjusted-rank sum in the 

case of the Quade test) can be used as a baseline to 

which every other treatment will be compared. This 

makes sure that the maximum number of comparisons 

is k(k–1)/2. 

A famous nonparametric paired test is the Wilcoxon 

signed-rank test. It looks at the differences between 

two dependent samples or paired observations drawn 

from a continuous population [19]. However, it has an 

issue when some of the differences are zero, for which 

the corresponding pairs are usually ignored in the 

computation and the value of n has to be reduced 

accordingly. This is not a good practice when the 

number of blocks is already small. Another issue is the 

presence of tied differences, namely, differences 

having the same value. 

A simpler Dunn test which is based on mean-ranks is 

an alternative for this purpose. However, it has been 

shown that a comparison result between two treatments 

using this test is also affected by other treatments [26]. 

A special attention is given to a less well known 

comparison test, the Conover-Iman test [27]. It takes 

rank sums (or weighted adjusted-rank sums) and every 

single rank (or weighted adjusted-rank) into 

consideration. According to this test, a significantly 

large value of 
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corresponds to a particular treatment having higher 

total scores than those of the baseline if R > RB. Here, 

RB and R are, respectively, the baseline sum of ranks 

and the sum of ranks of the particular treatment, 
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and rij, Rj n, and k are as before. If the difference is not 

significant, T in (8) follows a Student’s t distribution 

with kn–k–n+1 degrees of freedom. This is a two-tail 

significance test. For Quade test, sij and Sj are used in 

place of rij and Rj in (9) and (10), respectively, where Sj 

is the sum of weighted adjusted-ranks in the j-th 

treatment and sij is as given in (6). Also, for Quade test, 

the difference R–RB is replaced with S–SB, where SB is 

the baseline sum of weighted adjusted-ranks. 

Every paired comparison between a treatment and 

the baseline produces a p-value. This value is a 

measure of significance of the test. The more 

significant the difference between the two rank sums is, 

the smaller the p-value becomes. The increasing order 

in which the resulting p-values can be arranged is the 

decreasing order of the effects. However, for the sake 

of accuracy, before any conclusion can be drawn from 

the test, every single one of these p-values needs to be 

checked against an adjusted significant level. A fixed 

significant level  (e.g., 0.05) is chosen for all the k–1 

tests as the probability of falsely concluding that the 

difference is significant. 

The Bonferroni adjustment is a simple one-step 

procedure for this purpose [28]. According to this 

procedure, if 

1
value-




k
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             (11) 

then the test result is significant. Several other 

procedures may also be used. Suppose that p-value(h) is 

the h-th smallest among the k–1 p-values, where h  

k–1. Using the adjustment procedure by Holm [29], if 

hk
p h 
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               (12) 

then the corresponding test result is significant. This 

procedure is repeated for all available h’s. Holland and 

Copenhaver [30] proposed another adjustment, 

namely, 

hk
hp  )1(1value- )( 
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Meanwhile, Finner [31] also suggested the use of 
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A two-step procedure by Li [32] starts by checking if 
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               (15) 

If that is true, then all the test results are significant. 

Otherwise, it proceeds to the second step to see, for all 

h  k–1, whether 

  )1()value-(value- )1(   kh pp
    (16) 

If that is the case, then the corresponding test result 

is significant. 

According to Ref. [24], Bonferroni adjustment is 

likely to be the worst in terms of power. Procedures by 

both Holm and Holland tend to behave similarly to 

each other, while those by Finner and Li usually 

perform the best. However, when the blocks are very 

similar to each other, the latter two are likely to 

incorrectly classify the corresponding results as not 

significant. In such a case, the adjustment by Li even 

performs worse than that of Bonferroni. 

Once the treatments can be grouped into being 

significantly or not significantly different from the 

baseline, the above procedures are executed once again, 

this time with a new baseline and without the old one. 

The new baseline is chosen the same way as before and 

the number of treatments becomes k–1. This is repeated 

until all the k(k–1)/2 comparisons are made or no more 
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differences between treatments can be found, 

whichever happens first. 

2.4 Measures of Effect Size 

The effect of each of the waste types on the response 

in a repeated measures design cannot be measured 

directly (unlike, for instance, the case of regression 

models). This is the effect of variation within a 

particular type. However, the effect of variation 

between the types in this design can be calculated. This 

can be used to indicate the proportion of variation 

within the response that can be explained by variation 

between the types. This class of effect size is different 

from correlation coefficients. Although together they 

indicate the proportion of variance explained, 

correlation coefficients would — in this case — 

measure the effect of variation within a particular type 

on variation within the response. 

An obvious effect size for Friedman test is Kendall’s 

W, which is the ratio of the variability among types and 

the maximum possible variability [19]. In fact, this is a 

normalized form of Friedman’s QF from Eq. (1) and 

given as follows: 
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with values ranging from 0 to 1. For ANOVA on ranks, 

two measures of effect size for ANOVA can be used, 

namely [33], 

SSEknrrk

rrk

n

i

k

j
ij

k

j

n

i
ij

n

i

k

j
ij

k

j

n

i
ij

 

2

1 11

2

1

2

1 11

2

12
P






















































 

 

  

  

    (18) 

and 

2
E

2

1 11 1

2

2
E

2

1 11

2

12

 

)1(

sknrrkn

snknrrk

n

i

k

j
ij

n

i

k

j
ij

n

i

k

j
ij

k

j

n

i
ij















































 

  

  

 (19) 
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The bigger these measures are, the bigger the effect 

of variation between the types on the response 

becomes. 

There are no clear measures of effect size for Quade 

test. However, if ANOVA is performed on the 

weighted adjusted-ranks, then Eqs. (18) and (19) can be 

used as the measures. 

3. Methods 

Data from a study of construction material waste 

generation as reported in Ref. [6] will be used for 

demonstration. In that study, 26 respondents were 

randomly chosen in the Banjar Regency (South 

Kalimantan) from a limited population of construction 

professionals having a minimum of 5 years of 

experience in the field. They were asked to judge the 

relative amount of material waste generated in relation 

with seven types of construction waste. Basically, this 

was a study on the effects of construction waste. The 

responses were given in a 5-point ordinal scale (1 = 

extremely small, 2 = small, 3 = moderate, 4 = large, 5 = 

extremely large). 

Repeated measures design is a clever choice of 

model for such a noticeably small number of 

respondents. With n = 26 and k = 7, it virtually inflates 

the size to 182. 

The three ANOVA-like tests will be performed on 

the data, namely, Friedman test, ANOVA on ranks, and 

Quade test. A session of ANOVA will also be run with 

no verification of the usual assumptions (normality, 

independence, and homoscedasticity). The test statistic 

for ANOVA is given by Eq. (3) with the ranks being 

replaced with the corresponding original responses. If 
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the result from any of the above tests for repeated 

measures is significant, a series of post hoc tests and 

p-value adjustment procedures will follow. 

Conover-Iman test and five p-value adjustment 

procedures will be employed for this purpose. 

Comparisons between different tests or procedures 

at every phase of the analysis will also be conducted. 

The purpose of the comparisons is to examine the 

consistency and validity of the tests or procedures 

relative to each other. 

4. Results 

Table 2 shows the data using a format given in Table 

1. Here, every row and every column corresponds to a 

respondent and a waste type, respectively. 

4.1 Repeated Measures 

Table 3 shows the test results. Each of the p-values 

indicates that the result is significant for the 

corresponding test. Together, the tests consistently 

conclude the significance of the effects. The values of 

effect size also show a degree of agreement. 

Interestingly, both ANOVA on ranks and Quade test 

produce relatively bigger values of effect size. 

The assignment of ranks (or weighted adjusted-ranks) 

in the cells of Table 2 varies from one test to another. 

This variation results in different orders of effects 

supposedly brought by the waste types to the relative 

amount of material waste. 

Fig. 1 shows the sums of ranks or weighted 

adjusted-ranks or scores of the tests for repeated 

measures. If the sums of ranks (or weighted 

adjusted-ranks) in different types of waste are arranged 

in an increasing order for every test, that order will 

show the relative strength of a waste type in generating 

material waste. The order for ANOVA is based on the 

original responses. Table 4 shows the resulting orders. 

All the tests show that some types of waste affect the 

generation of material waste differently from one 

another. Both Friedman test and ANOVA on ranks 

result in exactly the same order of waste types. 

Table 2  Data from Ref. [6] in repeated measures design. 

Respondent 
Responses on waste types* 

A B C D E F G

1 1 2 1 1 2 2 1

2 1 1 1 1 1 1 1

3 4 1 2 3 3 2 4

4 2 1 1 2 3 1 3

5 2 2 2 2 2 2 2

6 2 1 1 3 1 1 2

7 2 3 2 2 2 2 2

8 3 3 4 4 2 3 4

9 2 3 1 3 3 2 3

10 2 2 2 3 2 3 2

11 3 2 3 1 1 2 2

12 3 2 1 2 3 2 2

13 4 2 3 3 2 1 4

14 3 2 2 3 2 2 3

15 2 2 1 2 1 1 1

16 1 1 1 2 1 2 1

17 1 2 1 1 1 2 1

18 4 1 1 4 3 1 4

19 3 2 2 3 3 4 2

20 3 2 2 3 2 2 2

21 3 2 2 3 3 4 2

22 4 2 2 3 3 2 4

23 3 1 2 2 1 2 2

24 2 1 3 3 4 4 4

25 2 2 2 2 2 3 2

26 2 1 1 1 2 2 1

* A = overproduction, B = waiting, C = transport, D = extra 
processing, E = inventory, F = motion, G = defects 
 

Table 3  Test results. 

Test 
Test 

statistics 
p-value 

Effect 
size*

Friedman  3.818 0.0014 0.127 

ANOVA on ranks  4.715 0.0002 
0.159 
0.075

Quade  31.608 0.0000 
0.151 
0.074

ANOVA  4.150 0.0007 
0.142 
0.063

* For ANOVA on ranks, the Quade test, and ANOVA, the first 

measure of effect size is P
2, the second is 2. 
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Fig. 1  Sums of ranks or weighted adjusted-ranks or scores 
(A = overproduction, B = waiting, C = transport, D = extra 
processing, E = inventory, F = motion, G = defects). 

 

Table 4  Resulting orders of waste types. 

Test 
Waste types* in an increasing 

order of effect strength 

Friedman C, B, E, F, G, D, A 

ANOVA on ranks C, B, E, F, G, D, A 

Quade B, C, F, E, D, G, A 

ANOVA C, B, E, F, G, D, A 

* A = overproduction, B = waiting, C = transport, D = extra 
processing, E = inventory, F = motion, G = defects 
 

Overproduction is found as having the strongest effect 

and transport as having the weakest. Waiting does not 

seem to strongly affect material waste generation 

compare to inventory, which along with motion and 

defects exhibit moderate effects. Extra processing 

shows a strong effect right below that of 

overproduction. The same order is also produced by 

ANOVA. 

On the other hand, Quade test produces a slightly 

different order. This is due to the fact that Quade test 

incorporates information concerning the spread of 

scores. Overproduction is still the strongest in terms of 

effect, while other waste types swap positions with 

each other. Inventory and motion remain moderate. 

Extra processing becomes less important and swaps 

positions with defects. Also, waiting becomes the 

weakest in terms of effect followed by transport. 

4.2 Paired Comparisons and p-Value Adjustment 

Now, it is time to delve deeper into the differences 

between the types of waste to establish how significant 

they actually are. A post hoc test by Conover-Iman [27] 

on every order followed by five p-value adjustment 

procedures gives results as shown in Table 5. 

The number of paired comparisons indicates how 

many times Conover-Iman test is performed. The 

maximum number is 18 resulting in four groups of 
 

Table 5  Post hoc results. 

Test 
Group* of waste types 

(adjustment proc.) 
# of paired 

comp. 

Friedman C, B, E, F, G 
B, E, H, G, D, A 

(Bonferroni) 
11 

 
C, B, E, F 

B, E, F, G, D, A 
(Holm, Li) 

11 

 

C, B 
B, E, F, G 

E, F, G, D, A 
(Holland) 

15 

 

C, B, E 
B, E, F, G, D 
E, F, G, D, A 

(Finner) 

15 

ANOVA on 
ranks

C, B, E, F, G, D, A 
(Bonferroni, Holm) 

6 

 

C, B, E 
B, E, F 

E, F, G, D, A 
(Holland) 

15 

 

C, B, E, F 
B, E, F, G 

E, F, G, D, A 
(Finner) 

15 

 

C, B, E, F, G 
B, E, F, G, D 
E, F, G, D, A 

(Li) 

15 

Quade B, C 
C, F, E 
F, E, D 

E, D, G, A 
(Bonferroni) 

18 

 

B, C 
C, F 

F, E, D 
E, D, G, A 

(Holm) 

18 

 

B, C 
C, F 
F, E 

E, D, G, A 
(Holland, Finner, Li) 

18 

* A = overproduction, B = waiting, C = transport, D = extra 
processing, E = inventory, F = motion, G = defects 
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waste types. The second largest number is 15 and it is 

related to three groups as the result. Two groups are 

produced after 11 comparisons, and one after only 6. 

Each of the adjustment procedures puts different 

types of waste into groups. Within any given group, the 

waste types are not significantly different from each 

other in terms of effect. For instance, Bonferroni 

procedure on the result of Conover-Iman test following 

Friedman test identifies two distinct groups of waste 

types. Transport, waiting, inventory, motion, and 

defects are not significantly different from each other 

in terms of effect, and neither are waiting, inventory, 

motion, defects, extra processing, and overproduction. 

Some of the procedures produce exactly the same 

groups for the same test. Both Holm and Li procedures, 

for instance, result in transport, waiting, inventory, and 

motion in one group, and waiting, inventory, motion, 

defects, extra processing, and overproduction in the 

other. 

The results demonstrate different abilities by the 

procedures in separating waste types based on their 

effects. The more groups a procedure can produce, the 

more sensitive the procedure is to the difference 

between types. However, it also depends on the results 

from the corresponding test. In general, Holland and 

Finner procedures are likely to be more sensitive than 

the others as they use up the maximum number of 

comparisons for any given test. On the other hand, 

Bonferroni and Holm procedures are the least sensitive. 

4.3 Recommendation of Methods 

Results from repeated measures show that the tests 

are consistent with each other. There is no abrupt 

change between the orders of waste types that they 

produce. In fact, the difference is only due to 

information of the spread of scores being incorporated 

into the computation by Quade test. 

Hence, the nonparametric tests recommended for 

studying of effects of construction waste with repeated 

measures are 

 Friedman test and ANOVA on ranks if the 

spread of data is not so severe, and 

 Quade test if the spread of data is severe. 

It should be followed by Conover-Iman test as the 

post hoc test. 

Further, the grouping created by p-value adjustment 

is useful for scrutinizing the differences among 

construction waste types more quantitatively. It 

enables judgement on how different a certain set of 

waste types are from the others. 

In general, these procedures perform relatively 

consistent with each other. In particular, however, Both 

Holland and Finner procedures tend to result in relatively 

more groups than the others. Li procedure performs rather 

moderately in terms of the number of resulting groups. 

Hence, the p-value adjustment procedures 

recommended for the above nonparametric tests and their 

corresponding post hoc results are 

 Holland and Finner procedures if finer 

grouping among waste types is an objective, 

and 

 Bonferroni, Holm, and Li procedures if finer 

grouping among waste types is not an objective. 

5. Conclusion 

The use of three nonparametric tests for repeated 

measures has been explored. The results have been 

demonstrated on the effects of construction waste. 

Conover-Iman test has also been used to obtain the 

corresponding post hoc results. A series of p-value 

adjustment procedures have been shown to result in 

inferences concerning the grouping of different waste 

types. In general, these procedures perform relatively 

consistent with each other. Some procedures, however, 

tend to produce finer grouping than the others. Finally, a 

recommendation on which tests and procedures to be used 

has been given. 
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