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Abstract: In this work, a systematic approach for real-time optimal energy management of hybrid electric vehicle (HEV) and plug-in 
hybrid electric vehicle (PHEV) has been introduced and validated through two HEV/PHEV case studies.  Firstly, a new analytical 
model of the optimal control problem for Toyota Prius HEV with both offline and real-time solutions was presented and validated 
through Hardware-in-Loop (HIL) real-time simulation. Secondly, the new online or real-time optimal control algorithm was extended 
to a multi-regime PHEV by modifying the optimal control objective function and introducing a real-time implementable control 
algorithm with an adaptive coefficient tuning strategy. A number of practical issues in vehicle control, including drivability, controller 
integration, etc. are also investigated. The newly proposed real-time optimal control algorithm identifies the optimal operational mode 
and the corresponding torque split among each components at each time step. The control objective was to minimize the well-to-wheel 
energy use (PEU and GHG), where both the fuel and electric energy consumption was taken into account. The optimal torque split was 
computed based on Pontryagin’s Minimum Principle. To reduce computational burden, the original 2 degree of freedom (DOF) 
powertrain control problem has been converted into a 1-DOF search algorithm in the optimization search. For practical implementation, 
an adaptive technique was utilized to update the equivalence factor based on battery SOC and current driving distance.  The newly 
proposed fast PMP algorithm was investigated through Model-in-the-loop (MIL) simulation tests using the simplified vehicle model, 
showing improved PEU consumption by 3-5%, comparing to the baseline rule-based controller for which the battery SOC is just 
depleted at the end of the trip. The new algorithm was also validated on various driving cycles using both Model-in-Loop (MIL) and 
HIL environment. This research better utilizes the energy efficiency and emissions reduction potentials of hybrid electric powertrain 
systems, and forms the foundation for the developments of next generation HEVs and PHEVs. 
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1. Introduction  

Increasing concerns about environmental issues 

have made hybrid electric vehicles (HEVs) with 

considerably improved energy efficiency and reduced 

emissions a promising alternative to conventional 

Internal Combustion Engine (ICE) vehicles. The 

energy efficiency improvement of HEVs is partially 

due to their capability of recovering braking energy, 
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and partially due to their ability to allow the ICE to 

operate at the high efficiency operation conditions with 

the additional degree of freedom from two energy 

sources on board of the vehicle, electrical energy 

storage system (ESS) and fuel tank. The presence of 

this additional degree of freedom, however, also 

demands an appropriate energy management strategy 

to exploit the optimal operation effectively. 

Recently, plug-in hybrid electric vehicles (PHEVs), 

HEVs with oversized batteries that can be recharged 

using grid power at station, present an even more 

promising solution to greener vehicles due to their 

ability to further reduce the petroleum consumption 

and greenhouse gas (GHG) emissions by using grid 
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The powertrain model described in 3.4 can be 

summarized as in the following two equations: 

( )

( )

   

    

     

 
belt rd

k k
eng BAS belt tx tx fd fd RTM rd req

m
bat c BAS BAS BAS RTM RTM RTM

T T R R R T R T

P T T  (4) 

The series-parallel powertrain has a degree of 

freedom of two. We chose battery power Pbat and rear 

traction motor torque Trtm as the two independent 

control variables. To apply Pontryagin’s Minimum 

Principle to the optimal control problem, we first have 

the Hamiltonian as follows: 

,

2

,

( ( ), ( ), ) ( ( ), ( ), )

4 ( )
( ) ( )
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where p(t) is the costate. 

The optimal control variables are determined such 

that the Hamiltonian is minimized at each time step: 
* * *

( )
( ) [ ( ), ( )] min ( ( ), ) T

bat rtm
t

t P t T t H t t
u

u u
  (6) 

For Prius, a 1D search has been conducted at each 

time step to get the optimal cost function (minimum 

Hamiltonian in this case). For this PHEV, a 2D search 

has to be carried out at each time step. The ultimate 

optimal point was the one that gave lowest cost 

(Hamiltonian) value. 

The results of different optimal control strategies are 

given in Table 2 for comparison. The control 

algorithms have been implemented and tested on the 

dSPACE Hardware-in-Loop simulator as shown in Fig. 

5. The Fast PMP optimal control method is practical 

and superior in fuel economy and GHG emission 

reduction. 

4. Summary 

The work was an extended study based on the 

EcoCAR2 development, where a 2013 GM Chevrolet 

Malibu was retrofitted into a PHEV to improve energy 

efficiency, reduce emissions while retaining and 

increasing performance. Following the 

model-based-design (MBD) process, two sets of plant 

model were developed: a simplified control-oriented 

plant model to allow initial conceptual validation of the 

optimal control algorithm and a more sophisticated  
 

 
Fig. 4  Cost function at 35s step of UDDS cycle. 

 

 
Fig. 5  Desktop simulation and HIL result. 

Table 2  Fuel energy consumptions for different control strategies on the same UDDSx10 cycle. 

 Fuel Economy 
MPG 

WTW PEU (Wh 
PE/km) 

Energy Consumption 
Improvement* 

Computation Time** 
(Sample Time = 0.01s) 

Mild-hybrid: Production Malibu 26.64 774 / / 

PHEV: Rule-based  47.98 101.96 (baseline) 10 min 

PHEV: Slow PMP with fixed p 51.02 97.01 4.8% 6h 

PHEV: Fast PMP with fixed p 50.69 97.319 4.5% 20 min 

PHEV: Fast PMP with adaptive p 49.38 98.56 3.3% 20 min 

*  Compared to the baseline model.  ** With same plant model and driver model, on a 32 GB, 4 core, 2.5 GHz computer. 
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implementation-oriented plant model based on 

dSPACE Automotive Simulation Models (ASM) tool, 

where I/O interface was the same as in the real vehicle.  

Based on the above vehicle model, a real-time 

optimal control algorithm was developed, which 

identifies the optimal operational mode and the 

corresponding torque split among each components at 

each time step. The control objective in this study was 

to minimize the well-to-wheel petroleum energy use 

(PEU), where both the fuel and electric energy 

consumption was taken into account. The optimal 

torque split was computed based on Pontryagin’s 

Minimum Principle. Since the powertrain system has a 

degree of freedom of two in terms of free control 

variables, a 2D search algorithm were initially 

developed to find the optimal point. To reduce the 

computational burden, the 2D search algorithm was 

further converted into a 1D-search algorithm based on 

optimization techniques. For practical implementation, 

an adaptive technique was utilized to update the 

equivalence factor based on battery SOC and current 

driving distance.  

The proposed fast PMP algorithm was first 

investigated through Model-in-the-loop (MIL) 

simulation tests by using the simplified vehicle model. 

Simulation results have shown that the PMP algorithms 

have improved the PEU consumption by 3-5% when 

comparing to the baseline rule-based controller and the 

lowest PEU consumption was obtained when battery 

SOC is just depleted at the end of the trip. Among all 

algorithms, the fast PMP with adaptive costate p was 

the best one that has balanced both energy consumption, 

computation efficiency, and the ability for practical 

implementation, since only driving distance was 

needed for this algorithm. 

After the control algorithm was validated in the MIL 

environment, it was then migrated to the more complex 

model and integrated with other system modules (such 

as subsystem diagnostic modules) in the rapid 

prototype controller (MicroAutobox II). The real-time 

performance of the developed controller was 

investigated through the rapid-prototyping controller 

HIL platform, where plant model was uploaded into 

dSPACE midsize real-time simulator and the controller 

model was uploaded into MicroAutobox II. HIL 

simulation has proved that the proposed control 

algorithm is able to run in real time and can track the 

driving cycle very well. 
 

 


