
Modern Environmental Science and Engineering (ISSN 2333-2581)
September 2019, Volume 5, No. 9, pp. 775-791
Doi: 10.15341/mese(2333-2581)/09.05.2019/001
Academic Star Publishing Company, 2019
www.academicstar.us

A Thread Parallel Sparse Matrix Chemistry Algorithm for

the Community Multiscale Air Quality Model

George Delic

HiPERiSM Consulting, LLC, USA

Abstract: This reports on integration of a new Chemistry Transport Model (CTM) sparse matrix algorithm (FSPARSE) as a
replacement of the legacy JSPARSE algorithm in the U.S. EPA Community Multiscale Air Quality (CMAQ) model. This has been
implemented in both Rosenbrock and Gear methods for aqueous chemistry in a hybrid MPI and OpenMP implementation. Both
methods are well suited for an OpenMP thread-parallel version. For a 24 hour scenario, execution performance results for both MPI and
OpenMP thread parallel scaling are presented with the CMAQ5.3b release on a heterogeneous cluster of 10 nodes with a total of 128
cores. The FSPARSE version of CMAQ typically provides significant speedup over the standard EPA release with similar precision
in predicted species concentration values.

Key words: air quality models, sparse matrix methods, MPI, OpenMP, rosenbrock solver, gear solver

1. Introduction

This study reports on major performance

enhancements for the Community Multi-scale Air

Quality Model (CMAQ) that add new levels of

parallelism and replaces the legacy algorithm for a

sparse matrix linear equation solver. CMAQ is a major

air quality model (AQM) developed by the U.S. EPA

[1] and is supported through the Community Modeling

and Analysis System (CMAS) [2], as a part of the

University of North Carolina, Institute for the

Environment, Chapel Hill, North Carolina, USA [3].

CMAQ has a world-wide user base with over 3000

downloads as reported by CMAS. The release used in

this analysis is 5.3b and is available for download at

Github [4]. The remainder of this section reviews some

preparatory background to set the context of this work.

1.1 Air Quality Modeling: Use and Regulation

* In memoriam Jeffy O. Young, National Exposure Research
Laboratory, Computational Exposure Division, U.S. EPA.

Corresponding author: George Delic, Ph.D.; research
areas/interests: air quality and global climate models and
performance. E-mail: hiperismllc@gmail.com.

The role of air quality modeling is to study and

predict the chemical interaction, atmospheric transport,

and deposition of Criteria Pollutants (and other species)

in out-door air on metropolitan, regional, and

continental temporal scales. The AQM initiative in the

USA dates from the 1970’s and is a response to the

Clean Air Act [5]. Title 1 of the Clean Air Act (CAA)

directs the U.S. EPA to establish National Ambient Air

Quality Standards (NAAQS) for common pollutants

posing health risks. Federal regulation requires States

to demonstrate attainment of the NAAQS and together

with the U.S. EPA, they enact regulations to control

industrial and commercial pollutant emission sources,

while only the U.S. EPA regulates mobile emissions

sources. In 1990 the CAA was amended to add Air

Toxics and Acid Rain provisions and so-called

non-attainment areas were classified.

The criteria pollutants identified in the CAA [5]

include:

 Ground level ozone (O3 - contributor to smog)

 Particulate Matter (PM) in the 2.5 to 10 micron

range (PM2.5 and PM10) that poses atmospheric

haze and respiratory risk

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

776

 Lead (Pb)

 Nitrogen dioxide (NO2)

 Sulfur dioxide (SO2)

 Carbon monoxide (CO).

CMAQ is used on continental and regional scales in

the USA to predict concentrations and transport of

criteria pollutants and also as a real-time forecasting

model. At the State level, its use is often driven by a

State Implementation Plan (SIP), as developed by a

given State. A SIP defines regulations and their scope

within that State and also spells out consequences for

NAAQS when implemented. A SIP may only be

approved by the appropriate U.S. EPA Regional Office

for that State and typically uses environmental models

to demonstrate NAAQS attainment. The CMAQ model,

when used in the AQM, is first validated by application

to historical episodes and only then is it applied to

future scenarios to demonstrate compliance with the

NAAQS. Thus, with the aid of an AQM, an approved

SIP must demonstrate either NAAQS attainment by the

predetermined date, or NAAQS non-attainment. In the

case of NAAQS attainment, a 10 year Maintenance

Plan is imposed. Whereas in the case of non-attainment,

a Federal Implementation Plan (FIP) is developed at

the local U.S. EPA Regional Office and Federal

sanctions may be applied on the State in question.

Over the decades the science in the CMAQ model

has increased in complexity and continues to do so. As

a result, both the magnitude of the wall clock time and

volume of output data has escalated over time with

each new release. Therefore there is always a latent

need to improve CMAQ efficiency in performing

simulations on modern computer architectures.

Advances in processor and memory architecture, as

well as software paradigms, are regularly explored with

a view to their utility for improved efficiency and

scalable performance.

1.2 Parallelism in the Computing Market Place

The High Performance Computing (HPC)

marketplace is now dominated by parallel architectures

of several different types and requires a careful analysis

of the hardware model before a port of legacy

applications is attempted to any new architecture.

Table 1 summarizes some traditional HPC hardware

models and their acronyms, such as processing element

(PE). From the end-user (or application) viewpoint this

means choosing a parallel program paradigm amongst

the dominant multi-platform ones currently available

by categories such as those summarized in Table 2.

Typical modern commodity architectures include

clusters of computer nodes containing one or more

central processing units (CPU), with each CPU

populated by multiple cores, or PEs, each of which may

operate independently in a SIMD environment (Table

1). In recent years, nodes have acquired add-on

co-processor devices that host their own local memory

and are populated with many (hundred’s of) cores. The

former will be referred to as multi-core and the latter as

many-core devices. Both types of hardware

environments delegate subtasks to thread processes

that execute on individual cores.

Table 1 High performance computing (HPC) hardware models.

Mnemonic Functionality Features

SIMD

Single Instruction Stream
Multiple Data Stream

All PEs execute exactly the same instruction at the same
time

SMP = Shared Memory Parallel Memory is global to all PEs

MIMD

Multiple Instruction Stream Multiple Data Stream All PEs execute different instructions at the same time

DMP = Distributed Memory Parallel Memory is local to each PE

SMP = Shared Memory Parallel
Part of memory is global to all PEs and part is local to each
PE

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

777

Table 2 High performance computing (HPC) parallel program paradigms.

Paradigm Model Features
MPI

(Message Passing Interface)
Functional parallel (or task
parallel)

Distinct tasks perform operations simultaneously (on
different data)

OpenMP
(compiler directives)

Master-worker
Master task spawns subtasks (workers) to other
processes to distribute subtasks

MIC®
(Many Intergrated Core device)

Massive parallelism Cohorts of thread teams

1.3 Parallel Programming Styles in CMAQ

The standard distribution of CMAQ [2,4]

implements a MIMD/DMP hardware model (Table 1)

and uses MPI (Table 2) to implement this by

distributing partitions of the grid domain to different

MPI processes. It also relies on instruction level

parallelism [6] by invoking vector instructions (where

they are not otherwise inhibited) for the innermost

loops. However, the standard distribution of CMAQ

does not implement a SIMD/SMP (Tables 1 and 2)

hardware model. Therefore, one major performance

enhancement reported here is the inclusion of a thread

parallel program paradigm into the standard U.S. EPA

release of CMAQ for one of the most time consuming

modules of the CMAQ code. To achieve more efficient

parallel performance, the legacy sparse matrix

algorithm in the standard release of CMAQ is replaced

with a modern version.

The new version of CMAQ described here has three

levels of parallelism:

1) The outer MPI level is the one previously

delivered in the standard U.S. EPA distribution.

2) Each MPI process activates its own team of

threads in a thread parallel layer.

3) Instruction-level parallelism at the vector loop

level is preserved for each thread.

This new hybrid version of CMAQ is suitable for

either multi-core commodity processors or for

many-core general purpose add-on accelerators. The

suitability of the latter was explored previously [12] for

the case of the Intel Many Integrated Core® (MIC)

architecture but is not discussed here for CMAQ.

1.4 Algorithms in CMAQ

A brief summary of the algorithm design in CMAQ

is given here as a background to the descriptions of the

new algorithmic changes that follow. A comprehensive

survey of the science and algorithms developed and

applied in CMAQ is to be found in a detailed report

prepared by the U.S. EPA [8].

1.4.1 Science Processes in CMAQ

A one-atmosphere model was developed and this

describes the dynamics by a set of governing equations

on a regular grid of cells populating a global array

dimensioned by column, row, and level (or layer), for

the terrestrial atmosphere. This atmospheric model

uses a transport mechanism that consists primarily of

numerical algorithms for advection, with vertical and

horizontal diffusion, using meteorological input data

from another model. In this dynamical model, multiple

science modules describe various physical processes

such as advection, diffusion, photolysis, aqueous

chemistry and cloud dynamics, gas-phase chemistry,

etc. An operator splitting methodology allows a

fractional time step implementation of the science

processes that are integrated over time. The numerical

integration of the advection time step imposes input

synchronization at a time step interval Δtsync. This time

stepping method relies on the approximation that the

computational grid remains constant for the duration of

the interval of the synchronization time step. All

chemical species concentrations are stored in a global

array (indexed as described above) and this is

accessible to all science processes that may affect them.

Chemical transformations occur in gas, liquid, or solid

phases and each is modeled separately. The gas phase

is dominant and these transformations are described in

the CMAQ Chemical Transport Model (CCTM).

Operator splitting allows the gas-phase chemistry to be

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

778

decoupled from other physical processes. The CCTM

module computes the gas phase chemistry in a

numerical model of reaction kinetics for production

and loss of chemical species. This is accomplished

through solution of equations that arise from the

mathematical representation of the gas phase chemistry

where reaction rates determine production (or loss) of

chemical species in the gas phase. The number of

reactions that transform reactants into products varies

from approximately 90 to several hundred, and the

number of species may have a similar range. The

selection of the chemical species and the group of

governing chemical reactions, known as a chemical

mechanism, are predetermined and are interchangeable

in the CMAQ model as the knowledge base improves.

1.4.2 Gas Phase Chemistry Solver

Operator splitting in the CMAQ dynamical model

allows gas-phase chemistry to be de-coupled from

physical processes. As a consequence continuity

equations for each gas-phase mechanism species are

formulated and solved independently in each cell of the

regular grid over column, row and level dimensions.

The CCTM module computes the gas phase chemistry

in a numerical model for reaction kinetics where

reaction rates determine production, or loss, of

chemical species in the gas phase. A simple first order

ordinary differential equation (ODE) relates the rate of

change of species concentration to production and loss

terms on the right hand side, with one such equation for

each species. Concentrations of species at a later time

are obtained from an integration scheme for the first

order ODE [9]. However, in the case of CMAQ, the

ODE forms a coupled system of order N, the number of

reacting species, with some set of initial values of each.

The system is non-linear because the production and

loss terms on the right hand side may include second

and third order reactions for some species. Furthermore,

because of widely varying time scales of the reactions,

the system of ODE’s is stiff (see [9] for a definition).

The ratio of largest to smallest eigenvalues of the

Jacobian matrix is typically of the order of 1010 (or

larger) in atmospheric chemistry problems and this

represents an extreme case. The system of ODE’s of

rank N needs to be solved many times for each cell in

the grid domain of the advection time step scheme for

the dynamical processes. Not surprisingly the

execution time of the gas chemistry solver is a

substantial fraction of the total wall clock time of a

simulation and depends on the ODE solution method.

1.4.3 The Gear Algorithm as Applied in CMAQ

While the following description is predominantly

focused on the Gear algorithm, results for the case of

the Rosenbrock algorithm [10] are also included here.

The Rosenbrock algorithm in CMAQ has been

previously investigated by Delic [11] and uses the same

sparse Gaussian elimination method discussed here for

the Gear algorithm. The same FSPARSE algorithm

was also applied to the Global Modelling Initiative

(GMI) under contract to NASA and is reported in [12].

These are two of the three numerical integration

schemes used in the CCTM module of CMAQ. The

method proposed by Gear [13], was adapted by

Jacobson and Turco [14]. This is explained by

Jacobson [15] for AQM, and was later modified by the

U.S. EPA for application to CMAQ. Even with the

efficiencies developed in [14,15] the execution time is

typically 60% of the total wall clock time of a

simulation. Since the Gear solver is well documented

[16] it will be summarized briefly here only to the

extent needed to understand the application in CMAQ.

The Gear method is a numerical ODE integration

formula that is a multi-step and multi-order

predictor-corrector algorithm, where the corrector part

implements a Newton iteration requiring computation

of a Jacobian matrix. After convergence is achieved a

local truncation error is computed in an L2 norm over

species and this is used to determine both the chemistry

time step size and the order of the method.

On entry the dynamical time step, Δtsync, is

subdivided into chemistry time steps and, with an

initial estimate, the Gear algorithm begins with an

order one predictor formula. The predictor-corrector

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

779

method proceeds until a prescribed error tolerance in

the local error is either achieved or not. If achieved,

then the predicted concentration is accepted and the

next chemistry time step, and the order of the

integration formula, are estimated. Since the Gear

method is a multi-order one, the next time step is

estimated for the current order, one lower order and one

higher order, based on the respective local errors. If

either the convergence or error test fails, the integration

is restarted at the beginning of the failed time step after

a new computation of the Jacobian matrix, reduction of

the time step size, and/or lowering of the order of the

integration formula. These procedures are automated in

the Gear algorithm subject to several heuristic choices

to control computational demand including:

 Update of the Jacobian matrix only after

completion of a prescribed number of

successful chemistry time steps, if the order

changes, or if the convergence (or error test)

fails.

 Halting Newton iterations if convergence

progress is insufficient

 Limiting changes to the chemistry time step and

the order of the method to once every p+1 steps

for a p-th order method for stability reasons.

The Rosenbrock algorithm differs from the Gear

case in that it is not a multi-order, multi-step method.

One predictor iteration is followed by three corrector

iterations before computing the final solution to

determine a new time step increment. At the time,

modifications introduced in Refs. [14, 15] took

advantage of vector processing on the pipelined vector

architectures of Cray computers [17]. However, on

Cray computers, the cost was prohibitive if the Gear

method is applied to each cell of a multidimensional

grid. Therefore one modification introduced in [14]

was to apply the Gear algorithm to a block of grid cells

simultaneously. This modification allowed vector

instructions to be applied for an innermost loop over

the block dimension length, NUMCELLS, equal to the

size of the block (BLKSIZE). This method has the

disadvantage that it requires a memory copy of

concentrations from an array dimensioned by column,

row, and level, into a one-dimensional array

dimensioned by a cell index. Nevertheless, this

blocking method worked well on Cray architectures

with 128 word vector registers using a choice of

BLKSIZE = 500 grid cells. However, such a choice has

a memory copy penalty on current commodity CPUs

where a choice of BLKSIZE larger than approximately

64 leads to increased computational time. Another

disadvantage of choosing larger values of BLKSIZE is

that the time step size is the same for all cells in a block,

and cells with faster rates of species concentration

change may not converge as well as those cells with

slower concentration rate changes (i.e., cells differ in

“stiffness”). To ameliorate the negative consequences

of disparate cell stiffness, the algorithm (JSPARSE

herafter) in Refs. [14, 15] offers an option to order all

cells in the grid into blocks of cells having similar

stiffness, with each block having a length of

NUMCELLS.

Two additional improvements implemented in Refs.

[14, 15] are applied in the JSPARSE procedure to

exploit the sparse structure of the Jacobian in the direct

Gaussian linear solver:

1) Terms are ordered in the Jacobian matrix to

reduce fill-in when applying decomposition

and forward/back substitution.

2) algebraic manipulations involving zero

numerical values are eliminated in explicit

“hardwired” coding using multiple levels of

indirect subscript references.

Both these improvements are implemented in

symbolic manipulations that need be performed only

once using the known (unchanging) sparse structure of

the Jacobian matrix in the JSPARSE procedure.

However, the use of complex loop ranges based on

indirect array references that are evaluated only at

runtime, prohibits parallelization of outer loop nests.

When originally developed on Cray computers the use

of indirect addressing was not a major performance

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

780

inhibitor because that architecture allowed hardware

gather-scatter operations. However, today’s

commodity architectures do not support hardware

gather-scatter instructions and indirect addressing

carries a penalty because it cannot be parallelized

easily. It also leads to excessive translation look-aside

buffer (TLB) cache look-up that inevitably stalls a

commodity CPU. For some details of analysis for this

performance bottleneck see Young and Delic [18]. The

exception is the Intel MIC® architecture [7] which

does support gather/scatter operations in hardware.

In the U.S. EPA implementation of the Gear

algorithm additional changes include:

 code changes to integrate into the CCTM

structure,

 prohibition of negative concentration values

that are possible when rapid species depletion

occurs,

 choice of a relative error (RTOL) of 10-3 and

absolute error (ATOL) 10-9 ppm.

It should be noted that CMAQ, unlike the GMI [12]

implementation does not apply mass conservation for

species.

However, error tolerance values may be changed (as

input parameters in CMAQ), and they are based on

heuristic proposals by Byrne and Hindmarsh [19]. It is

important to note that these tolerances are applied to

the L2 norm of species errors for all cells in a block of

cells. Therefore, not all individual species in a block of

cells may satisfy them. Application of a mini-max

norm such as L∞ would be considerably more stringent,

but is also more expensive in computation time. Also,

more accurate results would be obtained with a block

size (BLKSIZE) of one, i.e., a single cell. However,

this choice also increases computation time

substantially.

2. New Sparse Matrix Algorithm in CMAQ

For the reasons outlined in the previous Sections, a

new sparse solver was developed to replace the legacy

method of Refs. [14,15] and this section gives some

detail on two of the major performance enhancements

for CMAQ with the Gear solver. The same description

applies to the Rosenbrock algorithm since it shares the

same computational modules with the Gear case. The

first change replaces the sparse matrix solver used for

chemical species concentrations in the standard U.S.

EPA distribution. The second modification integrates

the new solver into the transit over grid cells so that

separate blocks of cells are distributed to different

threads. Applying both modifications together

improves CMAQ efficiency. This was previously

observed to be the case in application to CMAQ with

the Rosenbrock solver [11].

2.1 Gaussian Elimination in the Gear Solver

The Gear chemistry solver in CMAQ applies direct

Gaussian elimination [20] of a sparse matrix system Ax

= b many millions of times per simulation. The

dimension of matrix A is determined by the number, N,

of reacting chemical species (N = 149 in this study).

While the species matrix has some N2 = 22,201

elements, the number of non-zero entries, NZ, is 1338

(day) and 1290 (night) for chemistry mechanisms,

respectively. The matrix solution has three stages:

(i) decomposition A=LU,

(ii) forward solve for Lz=b,

(iii) backward solve for Ux=z,

where L and U, are lower and upper triangular

matrices such that A=LU. For CMAQ, matrix A has

large condition numbers and is diagonally dominant by

many orders of magnitude, and therefore pivoting is

not applied in step (i). Scaling is applied to A to permit

exception handling at runtime. This allows underflows

and avoids the execution halting as a result of

overflows when no scaling is used. The above solution

is applied to each block of grid cells passed to the

chemistry solver. The choice of block size is a user

selectable parameter (BLKSIZE) but the actual value

has consequences for cache behavior on commodity

CPUs at runtime [11]. For all test cases reported here

the choice was limited to a default of BLKSIZE = 50.

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

781

2.2 New Sparse Matrix Solver

This section summarizes the algorithmic choices that

transform JSPARSE into a new procedure (FSPARSE

hereafter) for the Gear algorithm. The same method

applies to the Rosenbrock chemistry algorithm that was

previously described in [11]. First of all, a few words

about sparse matrix storage schemes are in order. All

sparse matrix algorithms reference only non-zero

elements and store the value in an array, but they differ

in the storage method for the row and column location in

the full matrix. Each scheme requires indirect subscript

references at some level, but the implementation has

consequences for parallel algorithm opportunities. The

Triplet storage scheme (used in JSPARSE) scans rows

and columns of the matrix and stores column and row

index values in two integer arrays. Alternatively, for NZ

non-zero elements in the matrix, the Compressed

Column (CC) scheme scans down successive columns

and uses an integer array i of length NZ together with

another pointer array p of length N+1 so that row indices

of entries in column j are stored in integer arrays i(p(j))

through i(p(j+1) -1). The CC scheme is described in

chapter 2 of Davis [21] for the C language case. In

another method, Compressed Row (CR) storage scans

across successive rows and uses a similar pointer

scheme described for CC (above). The starting point in

FSPARSE is the CSparse C language library developed

by Davis [21] which uses the CC storage form and has

been implemented with substantial modification in the

FSPARSE version of CMAQ. The CSparse library is

quite general and extensive, but only the sparse

Gaussian procedures have been adopted for this CMAQ

application. CSparse allows a generalized factorization

of the type PAQ = LU, where P is obtained from partial

pivoting and Q is chosen to reduce fill-in in LU. In

CMAQ the permutation matrix Q, is in effect, the result

of the re-ordering step taken over from the JSPARSE

procedure [14]. However, P = I (the identity matrix) is

the choice in the CMAQ model because the matrix A is

diagonally dominant and no pivoting is applied.

The CSparse procedures listed in Table 3 have been

extracted and translated into FORTRAN for integration

into the FSPARSE version of the Gear algorithm.

However, local modifications have been made. For

example, cs_lsolve and cs_usolve, will not allow

parallel/vector instructions on inner loops because the

CC form uses indirect addressing of array indexes on

the left hand side of the assignment (“=”). This is

demonstrated by the compiler message in the extract

from FSPARSE shown in Fig. 1.

However, if the indirect reference is on the right

hand side then parallel/vector instructions are enabled.

The transformation is achieved by using a Compressed

Row (CR) storage scheme as is demonstrated in Fig. 2.

The suggestion for the CR form enabling a

parallel/vector algorithm is from Björck [22]. Because

of this benefit of the CR form, FSPARSE has an option

to convert L and U to the Compressed Row (CR)

storage scheme after the sparse CC decomposition step

for A = LU. This enables vector SSE instructions to

schedule the inner loops of forward and backward

solve steps (see Section 2.1) while also allowing

parallel potential in the outer loop. Such parallel loop

nests may easily be parallelized in a many core version,

or whenever nested parallel threads are enabled in the

OpenMP model.

In the code for the solver part of FSPARSE that

corresponds to Fig. 2, the forward solve is performed

for all cells in a block of cells as shown in the example

of Fig. 3.

Table 3 C language procedures from CSparse translated
to FORTRAN in FSPARSE.

CSparse procedure Description

cs_compress Map Triplet to CC storage

cs_lu Driver for LU decomposition

cs_spsolve Sparse solve for L, and U

cs_reach Reach function

cs_dfs Depth first search

cs_lsolvea Solve Lz = b

cs_usolvea
 Solve Ux = z

cs_norm Compute 1-norm of A
a Converted to parallel and vector form using Compressed
Row (CR) format for L and U

Feb. 2010, Volume 4, No.1 (Serial No.26)
Journal of Agricultural Science and Technology, ISSN 1939-125, USA

! inner loop _will_ not vectorize in CC format – compiler message:
! row_f, Loop not vectorized: data dependency
! Loop unrolled 4 times
!
 col_f: do s_j = 0, N - 1 ! col index
 s_x(s_j) = s_x(s_j) / s_Lx(s_Lp(s_j,sn),sn)
 row_f: do s_k = s_Lp(s_j,sn)+1 , s_Lp(s_j+1,sn)-1
 s_x(s_Li(s_k,sn))=s_x(s_Li(s_k,sn)) - s_Lx(s_k,sn)*s_x(s_j)
 end do row_f
 end do col_f

Fig. 1 Example of FORTRAN version of compressed column (CC) format for a solve loop that inhibits vector instructions
on the inner loop.

! inner loop _will_ vectorize in CR format – complier message:
! col_fr: Generated 2 alternate versions of the loop
! Generated vector sse code for the loop
! Generated a prefetch instruction for the loop
!
 row_fr: do s_i = 1, N - 1 ! row index
 s_s = s_x(s_i)
 col_fr: do s_j = L_w(s_i,sn) , L_w(s_i+1,sn)-2
 s_s = s_s - L_Cx(s_j,sn) * s_x(L_Cj(s_j,sn))
 end do col_fr
 s_x(s_i) = s_s
 end do row_fr

Fig. 2 Example of FORTRAN version of compressed row (CR) format for a solve loop that does allow vector instructions
for the inner solve loop.

row_fr1: do s_i = 1, NS - 1 ! row
 DO NCELL = 1, NUMCELLS ! vector loop # 31
 rivot(NCELL) = K1(NCELL ,s_i)
 ENDDO
 col_fr1: do s_j = L_w(s_i,sn) , L_w(s_i+1,sn)-2 ! col
 DO NCELL = 1, NUMCELLS ! vector loop # 32
 rivot(NCELL) = rivot(NCELL) - Lr_Cx(NCELL,s_j) *
& K1(NCELL, L_Cj(s_j,sn))
 ENDDO
 end do col_fr1

 DO NCELL = 1, NUMCELLS ! vector loop # 33
 K1(NCELL,s_i) = rivot(NCELL)
 ENDDO
 end do row_fr1

Fig. 3 Example of FORTRAN version of Compressed Row (CR) format for a solve loop that expands the example of Fig. 2
to vector loops over blocks of cells of length NUMCELLS.

In Fig. 3 the outer row loop (row_fr1) is not

parallelizable because of the recurrence on array K1.

The column loop (col_fr1) is parallelizable because the

CR format places the indirect reference on the second

index of the K1 array. All loops contain a vector loop

on the cell index NCELL for the current block and

NUMCELLS is the blocksize. At the cost of a memory

copy, a temporary array (rivot) is introduced so that a

vector-inhibiting recurrence is avoided on the

innermost loop (# 32).

2.3 Driver Procedure

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

783

The CCTM driver procedure is CHEM in CMAQ

and has major loops over the blocks of cells in a grid

dimensioned by column, row, and level. The MPI

implementation partitions the entire grid on the column

and row dimensions into sub-domains where the

number of cells in each sub-domain depends on the

number of MPI processes (NP). Each sub-domain has

blocks of cells that are processed in the solve steps as

described in Sections 2.1 and 2.2. The number of

blocks is calculated from the BLKSIZE parameter

choice in a grid initialization procedure GRID_CONF.

However, the number of blocks diminishes as NP

increases. For each MPI process the chemistry solver

time step for each block is independent of all others,

and different blocks are distributed amongst available

threads in a thread parallel team using an appropriate

scheduling algorithm. This strategy is attractive

because it creates coarse parallel granularity for thread

teams as a result of the substantial scope of the

contained arithmetic operations. Thus the Gear

algorithm is applied independently by each thread in

the team to its own chosen block of cells.

Table 4 shows the subroutines modified in the

FSPARSE version of CMAQ. This indicates those

subroutines inlined into the new version of CHEM that

has two large thread parallel regions: one for reordering

(as in the original JSPARSE version), and a second for

the chemistry solution with time step integration. Both

parallel regions contain loops over the total number of

grid blocks for each MPI process, but the first takes

only a small fraction of the time spent in CHEM.

The new version of CHEM was created by

successive code structure modifications of the standard

U.S. EPA Gear solver without changing the science of

the model in any way. Specific restructuring steps

applied to the standard CMAQ gas chemistry solver

included:

 New modules for procedures (see Table 3)

 Arrangement of inner loops so that they enable

vector instructions.

 Declaration of thread parallel regions by

insertion of OpenMP directives and

classification of local (thread private) and

global (shared) variables.

 Simplification/streamlining of redundant code.

The modified FSPARSE version of CMAQ applies a

thread parallel strategy that has three prongs:

1) Partitioning storage into global shared variables

and those private to threads.

2) Distribution of NUMCELLS sized chunks of

the grid domain to separate threads in a parallel

thread team.

3) Ensuring each thread has inner loops that

vectorize where ever possible.

The two parallel regions in the FSPARSE CHEM

version invoke OpenMP thread parallel teams that

execute either on a host processor or on many

integrated core® (MIC) processors through the offload

option in the Intel compiler. This thread-vector parallel

strategy can only succeed if there is sufficient coarse

grain parallel work for each thread. This is achieved

with the modifications described above by creating a

large parallel region for the block loop and it is this

loop that has a diminishing range as the number of MPI

processes increases.

Table 4 The U.S. EPA procedures of the Gear solver
modified in the FSPARSE algorithm.

CMAQ
procedure

Description of computational function
in separate modules

GRID_CONF Define grid and set BLKSIZE

GRVARS Declare allocatable arrays

GRINIT Initialize and allocate arrays

JSPARSE
Define chemistry structure and symbolic
Gaussian elimination

CHEM
Loop over grid blocks and call Gear
solver

CALCKS Prepare reaction rate coefficients

PHOT Prepare photolytic rate coefficients

SMVGEARa Implementation of Gear ODE algorithm

SUBFUN Rate of change of species concentrations

PDERIV Jacobian matrix

DECOMP LU decomposition

BACKSUB Forward and backward solve
a Inlined into FSPARSE CHEM procedure with calls to the
others in this table

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

784

3. Test Bed Environment

3.1 Hardware

The hardware systems chosen were the platforms at

HiPERiSM Consulting, LLC, shown in Table 5. Nodes

20 and 21 host two Intel E5v3 CPUs with 16 cores and

each node has four Intel Phi® co-processor (MIC)

processors [7] with, respectively, 60 and 59 cores each.

These are the base nodes of a heterogeneous cluster

that includes an HP blade server hosting nodes 27 to 34

with dual 4-core Intel E5640 CPUs. The total core

count of this cluster is 128 with ~2 Tflops (peak)

floating point performance in single precision. The

MPI executions are launched across multiple

combinations of these nodes using an Infiniband (IB)

fabric with a theoretical bandwidth limit of 40G

bits/sec. This cluster allows for comparison of the

FSARSE hybrid (MPI + OpenMP) parallel versions of

CMAQ with the original EPA JSPARSE version.

3.2 Compilers

This report implemented the Intel Parallel Studio®

[7] (release 17.6), for CMAQ on 64-bit Linux operating

systems. The HiPERiSM Consulting, LLC, version of

CMAQ, with multi-threaded parallelism, was compiled

and executed for this heterogeneous cluster. Other

compilers have been used in the past, but results

reported here will be confined to the Intel case.

Table 5 Test bed platforms and their attributes.

Platform
Node20-21
(each node)

Node27-34
(each node)

Processor
Intel™

E5-2698v3
Intel™ E5640

Peak Gflops (SP) ~589 ~170

Power consumption 135 Watts 80 Watts

Cores per processor 16 4

Processor count 2 2

Total core count 32 8

Clock 2.3 GHz 2.67 GHz

Band-width 68 GB/sec 25.6 GB/sec

Bus speed 2133 MHz 2933 MHz

L1 cache 32 KB 32 KB

L2 cache 256 KB 256 KB

L3 cache 40 MB 12 MB

3.3 Episode Studied

The 5.3b release of CMAQ was used in all results

reported here with the source code and model episode

data available at the download site [4]. This 24 hour

episode was for July 1st, 2011, using the cb6r3_ae6_aq

mechanism with 149 active species and 329 reactions.

For day/night chemistry this results in 1338/1290

non-zero entries in the Jacobian matrix. The episode

was run for a full 24 hour scenario on a 80 x 100

California domain at 12 Km grid spacing and 35

vertical layers for a total of 280,000 grid cells. This

case represent a modest grid size but is substantial

enough with the number of species and reactions

included.

Partitioning of the grid amongst the available

number of MPI processes (after division into blocks of

50 cells) gives 280,000/50 = 5600 blocks for NP = 1,

and 5600/NP thereafter, when NP > 1. For example,

with 8 MPI processes there are approximately 700

blocks per MPI process. As a result the workload per

thread is also diminished. Thus both increasing MPI

process and OpenMP thread count have consequences

for performance scaling because the number of blocks

is further subdivided.

4. Performance

4.1 Speedup and Scaling

In this section two performance metrics are defined

to assess thread parallel performance in the FSPARSE

modified code for CMAQ:

a) Speedup is the gain in runtime over the standard

U.S. EPA runtime,

b) Scaling is the gain in runtime with thread (or

MPI process) counts larger than 1, relative to

the result for a single thread (or MPI process).

For the CCTM each grid of cells is partitioned into

blocks of size BLKSIZE and these blocks are

distributed to threads in an OpenMP thread team in

FSPARSE. In the previous study for the Rosenbrock

algorithm [11] values of 16, 32, 48, and 64 were

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

785

investigated for impact on wall clock times due to

cache effects. However, variations in wall clock time

for BLKSIZE changes in this range were small and

shrank as the number of threads increased.

Nevertheless, wall clock time did rise for BLKSIZE

greater than 64 therefore in this study of the CMAQ,

the EPA default value of BLKSIZE = 50 was used.

4.2 MPI Scaling

CMAQ in the U.S. EPA JSPARSE version was

scaled on the homogeneous cluster (node20 and 21) in

the MPI range 1 to 64 processes for both Gear and

Rosenbrock algorithms. Wall clock time (in minutes) is

shown in Fig. 4 where a sharp decline in improvement

is visible, especially above 8 MPI processes. The MPI

parallel efficiency in Fig. 5 is calculated from speedup

divided by the process count. This average reflects

values of ~70% and ~55% with 32 and 64 MPI

processors respectively. The latter efficiency value

suggests that, on average, the CPU is idle half of the

wall clock time. This is caused by the increasing

dominance of MPI communication time over

arithmetic compute time, specifically an MPI barrier

call at the synchronization time step.

4.3 Results for one MPI Process

This section presents results for serial execution with

one MPI process (NP = 1) on node20 and compares

Fig. 4 Wall clock time (minutes) versus MPI process count
(assigned row x column) for the EPA JSPARSE version of
CMAQ for Rosenbrock and Gear algorithms.

Fig. 5 Corresponding to the times of Fig. 4 this shows MPI
parallel efficiency versus MPI process count for the EPA
JSPARSE version of CMAQ for Rosenbrock and Gear
algorithms.

JSPARSE and FSPARSE versions of CMAQ. For this

discussion Table 6 defines the major CMAQ science

processes and their acronyms.

To compare JSPARSE and FSPARSE version, Figs.

6 and 7, respectively, show the fraction of wall clock

time as a function of science process, for Gear and

Rosenbrock algorithms. The CHEM and AERO

processes dominate with diminishing contributions to

wall clock time for others. For the Gear case with

JSPARSE (Fig. 6) the fraction of the total runtime used

by CHEM dominates at ~50%. The next largest

fraction, at ~26%, is AERO, and all other science

processes have considerably smaller fractions. For the

Rosenbrock case with JSPASE (Fig. 7) AERO is the

dominant process, but CHEM is close to ~33%.

Therefore any improvement in the CHEM subroutine

will significantly impact the total wall clock time. Such

an improvement is visible in the FSPARSE case for

both Gear (Fig. 6) and Rosenbrock (Fig. 7) algorithms

when comparing the effects of increasing thread count

in the range 8, 12, 16 (omp8 to omp16). In the last case

the FSPARSE CHEM fraction is half of the EPA

JSPARSE value. This shows that the fraction of time

consumed in CHEM diminishes, and as it does so the

fractions of other science processes correspondingly

increase.

0
25
50
75
100
125
150
175
200
225
250
275
300
325
350

1x1 2x2 4x2 4x4 8x4 8x8

Rosenbrock Gear

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 8 16 24 32 40 48 56 64

Rosenbrock Gear

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

786

Table 6 CMAQ science processes and the module name.

Process and function
module
name

CCTM Chemical transport model CHEM

Aerosol species processing AERO
Asymmetric convective model (ACM) for
vertical diffusion

VDIFF

Photolysis processes PHOT

Advection in the horizontal plane HADV

Advection in the vertical (Z) direction ZADV

ACM and resolved cloud processes CLDPROC

Horizontal diffusion HDIFF

Couple concentration values for transport COUPLE

Decouple concentration values for transport DECOUPLE

Fig. 6 Fraction of wall clock time (percent) by science
process in CMAQ for the FSPARSE Gear algorithm
compared to JSPARSE (EPA) for NP = 1 MPI process and
OpenMP thread counts of 8, 12, and 16 (omp8, omp12 and
omp16).

Fig. 7 Fraction of wall clock time (percent) by science
process in CMAQ for the FSPARSE Rosenbrock algorithm
compared to JSPARSE (EPA) for NP=1 MPI process and
OpenMP thread counts of 8, 12, and 16 (omp8, omp12 and
omp16).

In more detail, Fig. 8 shows the speedup of

FSPARSE over JSPARSE for thread counts of 8, 12,

and 16, in 288 individual calls to CHEM for the full 24

hour simulation with the best results for 12 or 16

threads (with speedup ~3). Because of the core count

limitations on the blade server (node27 to 34), a default

of 8 threads is chosen for execution on the

heterogeneous cluster.

Table 7 lists the total time (in minutes) expended

individually for each of the physical processes in

CMAQ for the 24 hour episode described in Section

3.3. The results for node20 with NP = 1 are separated

for Gear and Rosenbrock CCTM algorithms in CHEM.

The original (JSPARSE) results are compared with the

FSPARSE version for 8 threads, and the Total entry

shows the speed up in parentheses: 1.32 (Gear) and

1.14 (Rosenbrock), respectively.

4.4 MPI Speedup and Scaling (Heterogeneous Cluster)

To compare the effects of increasing MPI process

count for JSPARSE and FSPARE versions of CMAQ,

Table 8 shows the fraction of wall clock times in MPI

communication, serial computation, and OpenMP

regions (in the case of FSPARSE). What was only

serial computation in JSPARSE, is split into serial and

OpenMP fractions in FSPARSE. Two important

Fig. 8 Parallel thread speedup over the standard U.S.
EPA model in 288 calls to CHEM with the Gear algorithm
for 8, 12 and 16 threads (OMP8 to OMP16), for NP = 1
MPI process.

0
5
10
15
20
25
30
35
40
45
50

EPA omp8 omp12 omp16

0
5
10
15
20
25
30
35
40
45
50

EPA omp8 omp12 omp16

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

OMP8 OMP12 OMP16

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

787

Table 7 CMAQ wall clock times (minutes) by science
process for a 24 hour simulation with NP = 1 for the Gear
and Rosenbrock algorithms in the CTM.

Science
process

JSPARSE FSPARSE (8 threads)

Gear Rosenbrock Gear Rosenbrock

Total 496.2 390.2
374.9

(x1.32)
328.3

(x1.14)

CHEM 248.2 128.7 116.7 68.8

AERO 129.8 135.9 140.3 141.5

VDIFF 54.0 57.7 54.7 55.0

PHOT 17.3 18.3 17.4 17.2

HADV 12.9 13.7 12.9 12.9

ZADV 15.6 16.5 15.5 15.4

CLDPROC 11.6 12.2 11.7 11.7

HDIFF 2.20 2.36 2.18 2.18

COUPLE 1.97 2.10 1.80 1.80

DECOUPLE 2.57 2.73 1.82 1.82

Table 8 For the heterogeneous cluster this shows CMAQ
fraction of wall clock time (percent) in MPI, serial, or
OpenMP time, in a one-day simulation, for the Gear
algorithm in the CTM for the number of MPI processes (NP)
shown in the first column.

NP
JSPARSE FSPARSE (8 threads)

MPI Scalar MPI Scalar OpenMP

4 13.5 86.5 10.9 61.0 28.1

8 15.1 84.9 11.0 62.1 26.9

16 27.2 72.8 15.5 51.3 33.2

observations are that MPI process time increases with

increasing NP, but less so for the FSPARSE case. Also,

as expected, note the diminished scalar time in the

FSPARSE case.

Fig. 9 shows the speedup of the FPSARSE version

(with 8 threads) over the EPA JSPARSE original for

Gear and Rosenbrock algorithms. These executions

were on the heterogeneous cluster, with one MPI

process on node20, and others on individual blade

nodes for NP = 4, 8, 16. Speed up in the Rosenbrock

case is less than that of the Gear algorithm because

there is less arithmetic computation per thread (i.e.,

reduced computational intensity per thread). A notable

feature of Fig. 9 is the diminution in speedup for NP =

16 cases. This is the consequence of two observations.

First is the diminished workload per thread because of

the reduced block count with increasing NP (as noted

above in Section 3.3). Second is that 4 MPI processes

are on each of the two fastest nodes. Overall the

speedup ranges from 1.16 to 1.46 (Gear) and 1.01 to

1.25 (Rosenbrock).

4.5 MPI Speedup and Scaling (Homogeneous Cluster)

For execution on the homogeneous cluster (node20

and 21), Figs. 10 and 11 compare performance results

for Rosenbrock and Gear algorithms with 8, 12, and 16

threads, on each node, and NP = 1, 4, and 8. Speedup

with FSPARSE is relative to the EPA JSPARSE

version executed on the same homogeneous cluster

configuration. Here, for Rosenbrock, the speedup

Fig. 9 Parallel thread speedup over the standard U.S. EPA
model for the Gear and Rosenbrock algorithms with 8
threads, for NP = 1 to 16 MPI processes (assigned row x
column) on the heterogeneous cluster.

Fig. 10 Parallel thread speedup over the standard U.S.
EPA model for the Rosenbrock algorithm with 8,12, and 16
threads, for NP = 1 to 16 MPI processes (assigned row x
column) on the homogeneous cluster.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 x 1 = 1 2 x 2 = 4 4 x 2 = 8 4 x 4 = 16

Gear Rosenbrock

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

OMP8 OMP12 OMP16

NP=1 NP=4 NP=8

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

788

Fig. 11 Parallel thread speedup over the standard U.S.
EPA model for the Gear algorithm with 8,12, and 16 threads,
for NP = 1 to 16 MPI processes (assigned row x column) on
the homogeneous cluster.

ranges from 0.85 to 1.14 (8 threads), 0.97 to 1.14 (12

threads), and 1.03 to 1.16 (16 threads). Whereas for

Gear, the speedup ranges from 0.98 to 1.39 (8 threads),

1.22 to 1.48 (12 threads), and 1.27 to 1.53 (16 threads).

Speedup for the Rosenbrock algorithm is overall less

than that for Gear due to less arithmetic work per

thread compared to Gear. It is interesting to observe the

increasing speedup for 16 threads when NP = 8, even

though cores are oversubscribed. The core count is

limited to 32 per node and this means that the

FSPARSE case may be limited by thread population

counts per node. Never the less, cores can be

oversubscribed by hosting more than one thread on

each. Such oversubscription occurs with16 OpenMP

threads per MPI process for NP = 8 (with 4 on each

node) resulting in a total 64 threads per node sharing 32

cores. For example, with 16 threads and NP = 8,

speedup is in the range 1.03 (Rosenbrock) and 1.27

(Gear). Part of the explanation for this phenomenon (in

the Gear case) when cores are oversubscribed, is due to

the fact that calls to CHEM from different grid cell

blocks are asynchronous and contention for core

resources on the CPU is ameliorated.

Table 9 repeats the measurements of Table 8, but

now for the homogeneous cluster case of node20 and

21 again with 8 threads. Whereas the fraction of wall

clock time in MPI communication rises in the

Table 9 For the homogeneous cluster this shows CMAQ
fraction of wall clock time (percent) in MPI, serial, or
OpenMP time in a 24 hour simulation for the Gear
algorithm in the CTM for the number of MPI processes
(NP) shown in the first column.

NP
JSPARSE FSPARSE (8 threads)

MPI Scalar MPI Scalar OpenMP

4 11.4 88.5 11.5 57.3 31.1

8 13.2 86.7 9.7 46.5 43.6

16 17.8 82.1 11.7 45.9 42.2

JSPARSE case, it is significantly reduced in the

FSPARSE algorithm. Also the increased fraction in the

OpenMP parallel region is obvious.

5. Numerical Analysis

5.1 Chemistry Convergence Criteria

To understand numerical precision this section

discusses some numerical metrics that affect

concentration value predictions in CMAQ. In the

CCTM convergence is controlled in both Gear and

Rosenbrock methods by accuracy parameters ATOL

and RTOL. In the standard U.S. EPA version of

CMAQ the default values chosen are RTOL = 1.E-03

and ATOL = 1.E-09 for the Gear algorithm, whereas

Rosenbrock uses ATOL = 1.E-07. The choice ATOL =

1.E-09 for Gear is based on the heuristic observations

in Ref. [19].

5.2 Norms in the Concentration Solution

There are two classes of error in this application of

the Gear solver. The first is the global and local error

metrics used in controlling the progress of the Gear, or

Rosenbrock, algorithm chemistry time stepping

algorithm controlled by the parameters RTOL and

ATOL. The other class of error is demonstrated in

metrics that show precision after the decomposition

and solve steps of the sparse linear system Ax = y. Such

metrics are monitored in FSPARSE with an option to

calculate several types of norms including |A|, |x|, and

|Ax-y|. In the CC formulation the norms are chosen as

the infinity norms, norm(Ax – y, inf), norm(x, inf), and

norm(y, inf), where the length of the vector (Ax-y, x, or

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60

OMP8 OMP12 OMP16

NP=1 NP=4 NP=8

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

789

y) is the number of chemical species. The “inf” norm

selects the maximum value of each vector. While

details are not shown here these norm results suggest

that the residual remains very small in the FSPARSE

algorithm for the chemistry solver.

Previous study has shown that correlation between

the value of ATOL and the norm of the residual for

solution of the sparse linear system is negligible. This

leaves open the choice that optimizes both runtime and

accuracy for species concentrations.

5.3 Species Concentration Predictions

A direct comparison of accuracy for species

concentration values predicted by the FSPARSE

version against the U.S. EPA standard release of

CMAQ is shown in Figs. 12 (a) to (d) for four selected

species concentrations: O3, CO, SO2, and NO2,

respectively. These are absolute errors for all 8,000

concentration values of each selected species in layer 1

at the end of a one-day simulation. The solid line is the

species concentration value predicted by JSPARSE for

a single MPI process (NP = 1) ranked in increasing

magnitude from left to right. Corresponding to each

value, the difference (scattered points) is the absolute

error value of the concentration between FSPARSE

and the JSPARSE result. The first feature to note in the

results is that O3 and CO concentration values are of

similar magnitude and differ in less than an order of

magnitude over the full range. Whereas, SO2 varies by

over four orders of magnitude, and NO2 by two orders

of magnitude. Therefore a uniform precision in

significant figures of accuracy would have to be more

(a) (b)

(c) (d)

Fig. 12 For the FSPARSE GEAR solver of CMAQ (with 8 OpenMP threads) this shows the species concentration absolute
error (scattered points) and concentration value (solid line) for 8000 values in layer 1 of the domain for species O3 (a), CO (b),
SO2 (c), and NO2 (d). The ranking is in increasing concentration value from left to right.

Feb. 2010, Volume 4, No.1 (Serial No.26)
Journal of Agricultural Science and Technology, ISSN 1939-125, USA

than 4, and this is hardly possible if a relative tolerance

RTOL = 1.E-03 is applied for the L2 norm over species

concentration in the Gear convergence criterion. The

second feature to note is that the absolute error

threshold ranges from 1.E-02 (O3) to 1.E-05 (CO)

below the corresponding concentration value.

Therefore the anticipated accuracy in the Gear solver in

CMAQ differs for different species. However, in view

of the precision issues noted above, these results are

deemed as acceptable pending test with constrained

values of RTOL and ATOL. However, such tests are

limited by the use of single precision values passed to

the CCTM by other CMAQ processes.

6. Lessons Learned

6.1 Benefits of the FSPARSE Method

Comparing performance for CMAQ 5.3b in the new

OpenMP parallel version with the U.S. EPA release

with either Gear or Rosenbrock chemistry solver

showed:

 A speedup in the range 0.9 to 1.5 depending on

the parallel thread and MPI process counts.

 Comparable numerical precision in species

concentration values.

6.2 Comparing Species Concentrations

A comparison of species concentration values

predicted by JSPARSE and FSPARSE versions of

CMAQ showed acceptable agreement for species such

as O3, NO2, NO3, SO2, and others not shown.

Remaining differences in species concentration values

could be due to cumulative error propagation in the U.S.

EPA method.

7. Conclusions

This study reported on major performance

enhancements for the Community Multi-scale Air

Quality Model (CMAQ) chemistry-transport model

(CCTM) that add new levels of parallelism and replace

the legacy algorithm in the Gear and Rosenbrock

methods. The CCTM is computationally intensive

when the Gear (or Rosenbrock) algorithm is used to

solve a stiff system of ordinary differential equations

(ODE), with sparse Jacobians, and accounts for over 50%

(or 33%) of the wall clock time of a simulation. To

improve performance two important changes were

made, the first of which replaced the sparse matrix

solver. The second modification integrated the new

solver into the transit over the grid domain so that

separate blocks of cells are distributed to different

threads in a team. The resulting sparse solver

(FSPARSE) replaced the legacy JSPARSE sparse

method. The FSPARSE solver is portable across

hardware and compilers that support vector and thread

parallelism and it adds both to the existing distributed

memory (message passing) level in the standard EPA

CMAQ release. Observed numerical differences

between the two methods are related to the numerical

precision achieved in each, and were observed to be

due (in part) to the way arithmetic precision is treated

in the U.S. EPA method. On Intel platforms a 24-hour

simulation on a continental U.S.A. grid of 280,000

cells, showed that with 8 to 16 threads the FSPARSE

version of CMAQ typically provides significant

speedup over the standard EPA release without loss of

precision in predicted concentration values.

References

[1] U.S. EPA, Office of Research and Development, National
Exposure Research Laboratory (NERL), Computational
Exposure Division, available online at:
https://www.epa.gov/aboutepa/about-national-exposure-r
esearch-laboratory-nerl-computational-exposure-division-
ced.

[2] Community Modeling and Analysis System, available
online at: http://www.cmascenter.org/cmaq/.

[3] University of North Carolina, Institute for the
Environment, available online at: https://ie.unc.edu/.

[4] CMAQ, available online at: https://www.epa.gov/cmaq,
https://github.com/USEPA/CMAQ.

[5] U.S. EPA Clean Air Act, available online at:
https://www.epa.gov/laws-regulations/summary-clean-air
-act.

[6] John L. Hennessy and David A. Patterson, Computer
Architecture: A Quantitative Approach (4th ed.), Morgan
Kaufmann Publishers, Elsevier, Amsterdam, 2007.

A Thread Parallel Sparse Matrix Chemistry Algorithm for the Community Multiscale Air Quality Model

791

[7] Intel Corporation, available online at:
http://www.intel.com.

[8] D. W. Byun and J. K. S. Ching, Science algorithms of the
EPA Models-3 community multiscale air quality (CMAQ)
Modeling System, United States Environmental Protection
Agency, Office of Research and Development, Washington,
DC, EPA/600/R-99/030, March 1999, available online at:
https://www.cmascenter.org/cmaq/science_documentation.

[9] Leon Lapidus and John H. Seinfeld, Numerical Solution of
Ordinary Differential Equations, Academic Press, New
York, 1971.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.
Flannery, Numerical Recipes in FORTRAN (2nd ed.),
Cambridge University Press, New York, 1992.

[11] G. Delic, 12th Annual CMAS Conference, Chapel Hill, NC,
October 28-30, 2013, available online at:
https://www.cmascenter.org/conference/2013/agenda.cfm.

[12] T. Clune, M. R. Damon and G. Delic, 14th Annual CMAS
Conference, Chapel Hill, NC, 2015, available online at:
https://www.cmascenter.org/conference/2015/agenda.cfm.

[13] C. William Gear, The automatic integration of ordinary
differential equations, Comm. ACM 14 (1971) 176-179.

[14] M. Jacobson and R.P. Turco, SMVGEAR: A
sparse-matrix, vectorized Gear code for atmospheric
models, Atmos. Environ. 28 (1994) 273-284.

[15] M. Z. Jacobson, Fundamentals of Atmospheric Modeling
(2nd ed.), Cambridge University Press, New York, 2005.

[16] C. William Gear, Numerical Initial Value Problems in
Ordinary Differential Equations, Prentice-Hall,
Englewood Cliffs, New Jersey, 1971.

[17] Cray computer, available online at: http://www.cray.com/,
http://en.wikipedia.org/wiki/Vector_processor.

[18] Jeffrey O. Young and G. Delic, 7th Annual CMAS
Conference, Chapel Hill, NC, October 6-8, 2008, available
online at: https://www.cmascenter.org/conference/
2008/agenda.cfm.

[19] G. D. Byrne and A. C. Hindmarsh, Stiff ODE solvers: A
review of current and coming attractions, J. Comput. Phys.
70 (1987) 1-62.

[20] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods
for Sparse Matrices (2nd ed.), Oxford University Press,
2017.

[21] T. A. Davis, Direct Methods for Sparse Linear Systems,
SIAM, Philadelphia, 2006.

[22] Åke Björck, Numerical Methods for Least Squares
Problems, SIAM, Philadelphia, 1996.

