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Abstract: In this work, the results of the measurements made in a physical model of a chute with two-phase aerated flow are presented. 
The aim is to compare the results of an existing theoretical criterion, with the results measured in the laboratory by means of updated 
measurement equipment, which allows better corroboration of the reliability of the theoretical criterion. To measure the air content in 
an air-water biphasic flow a physical model was used that simulates the Huites dam, Mexico, where, to diminish the effects of scale, it 
was built at 1:21 scale. Given the difficulties of making measurements in prototypes and the restrictions to represent the behaviour of 
the air with the current techniques of CFD, a conductivity probe was designed to measure the air content in a reliable, 
easy-to-manufacture way that allows measurement in models. The air measurements were processed using the technique of adaptable 
thresholds to obtain reliable records and these were compared with the equation proposed by Kramer [10]. This study focuses on the 
concentration of air near the bottom which is a site where a minimum concentration is required to avoid damage by cavitation. In 
addition to the agreement between measurements and calculations, the results show that there are difficulties in defining the thickness 
of the bottom layer which need to be considered to avoid cavitation. 
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1. Introduction  

When the speed of spillways is higher than 22 m/s, 

cavitation damage may occur when the absolute 

pressure within the fluid drops below the vaporization 

pressure of the fluid. The variables causing this are the 

flow velocity, local atmospheric pressure, local 

pressure on the spillway, amplitudes of pressure 

fluctuations and fluid vapor pressure. There is an 

equation for the cavitation index that relates the 

parameters involved which is expressed by the 

following equation ݇ = (ିೡ)ఘೢ௨మ/ଶ        [1] 

Where  is the pressure load, ௩ is the vaporization 

pressure of the fluid, ௪ is the density of the fluid and ݑ is the velocity. Falvey [7] recommends a cavitation 
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index greater than 0.25 with a smooth finish which 

would represent a velocity close to 29 m/s, however, it 

is recommended to take measures to avoid cavitation 

by ensuring velocities in the range of 22-26 m/s [20]. 

Another important factor to avoid cavitation damage 

is the air content near the spillway template. One of the 

first investigators to perform measurements on 

physical models to determine the air content in 

channels was Viparelli [20] in 1953. He developed a 

device to determine the velocity load in air water flows 

and the air content using a modified a pitot tube 

connected to a reservoir, where it extracted a sample of 

the flow and measured the amount of water and air 

taken. This method shows acceptable results with low 

air content, but shows uncertainty when the air 

concentration is high [1]. Later this instrument was 

modified to determine the air content in a staggered 

spillway [12] and in a hydraulic jump [3] with the 

disadvantage that for proper operation it is required to 

know the direction of the dominant flow, which is 
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difficult to determine in a hydraulic jump. 

Subsequently, numerous investigations have been 

carried out to determine the minimum air content to 

prevent cavitation. One of the first to investigate this 

was Petarka [16] who performed tests with velocities of 

35 m/s and observed that when the air content was 

between 1 to 2% the cavitation was reduced. 

Incrementing this between 6 to 8%, close to the 

template, cavitation was completely avoided. Russel 

and Sheehan [18] conducted studies at velocities 

greater than 46 m/s and determined that in order to 

avoid cavitation a concentration of 3 to 5% is required. 

In addition, Chanson [5] analyzed several experiments 

and found that with an air content between 4 to 8% 

close to the template, and even with speeds greater than 

45 m/s, damage by cavitation is avoided. 

Cavitation is the formation of vapor cavities in a 

liquid. In the rapids of a spillway the cavitation occurs 

in the flow at high velocity, where the water pressure is 

reduced locally due to an irregularity in the surface of 

the bottom. As the vapor cavities move into a higher 

pressure zone, they collapse, sending high-pressure 

shock waves and if the cavities collapse near the 

bottom, there will be damage to the concrete. Cracks, 

displacement, and surface roughness may also increase 

the potential for cavitation damage. The extent of 

cavitation damage will be a function of cavitation 

indices in key places in the spillway and the duration of 

flow. This mode of failure will normally only be a 

concern in fast spillways, since cavitation damage is 

less likely to occur in tunnels and conduits where there 

are changes in flow direction and confinement. In most 

cases, this mode of failure is unlikely to progress to 

dam failure as long flow durations are required to cause 

major damage to concrete liners. 

Kramer [11] studies the development of the 

distribution of air concentration in the hydraulic depth 

in a channel (straight model). The slope was adjustable 

between 0% and 50% and therefore allowed the study 

of the influence of the slope in the phenomenon. These 

detailed studies were possible mainly because new 

measurement techniques appeared. Kramer used an 

optical fiber measurement system. This system allows 

measurement of the local air concentration, flow 

velocity and bubble size. His work highlights a number 

of results, such as the air drag on the underside of the 

downstream jet of a deflector was large, however 

rapidly downstream of its point of impact, most of the 

air dragged is absorbed into the jet. The measured air 

concentrations at the bottom of the canal were much 

lower than those established by other authors. Even in 

these cases though there is no cavitation damage. It is 

also shown that the air-drag mechanism influences the 

air-absorption process. Using his results one can 

estimate air transportation to the flow. 

There have only been a few studies concerning the 

axial distribution of the water-air mixture in spillways 

and even less focused on the concentration of air in the 

template. In order to protect this type of structure from 

cavitation Kramer [11] developed an equation to 

determine the air content near the template downstream 

of the aerator, which is presented below ܥ = 7,2)−]ݔ݁ܥ ∗ 0,006ௌబ + ିܨ(6,6 ଶ.ହ ∗ ܺଽ௨]     			݂ݎ			5 ≤ ܨ ≤ 12	, ܵ ≤ 50%												[2]  

Where the air content close to the template is expressed ܥ as a function of the air concentration at the bottom 

upstream ܥ , the number of arrival Froude ܨ , 

channel slope ܵ, and the distance where it is required 

to know the air. ܺଽ௨ , which is dimensionless, is 

represented by the distance where one wants to know 

the air content between the hydraulic depth and where 

the air concentration is 90%. To use this equation, 

measurements were made using an optical fiber probe 

manufactured by RBI. It is noted that although the 

device used by Kramer [12] to introduce the air is not 

identical to the one utilized in this study, the 

phenomenon of air exhaustion in the rapid itself is the 

same as the one which is presented here. 

At the Institute of Engineering, UNAM tests were 

performed to identify the air content downstream of the 

aerator of the rapid using a physical model with scale 

1/21 of the exceeded spillway of the Huites 
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4. Tests 

The objective of these measurements is to determine 

the air content found in the flow, with the main interest 

being in the concentration near the template to identify 

and avoid cavitation problems. In the physical model it 

was decided to measure the air content on the spillway 

making measurements in 8 different cross sections 

which were 13.0 cm before the aerator and 0.15, 0.45, 

1.20, 1.60, 2.00 and 2.40 cm after the aerator. These 8 

sections were divided into 5 equidistant points across 

the width of the cross section, to measure within 2 mm 

of the template, and then at each centimeter until the 

free surface is reached which is calculated from the 

bottom to where the air concentration is less than 0.9, 

Pfister [17]. Tests were performed on the physical 

model with three flows 0.5, 1.0 and 1.5 m3/s. The 

measurements were carried out with a sample 

frequency of 20,000 Hz, in each of the two reading 

channels for an average duration of 35 s. After this, the 

signals where analyzed using an adaptive thresholding 

technique to obtain the air content of each sensor. 

Finally, the average of both records was used to 

determine the average air content in each cross section, 

which is presented in Figs. 4, 5 and 6. The results were 

compared with Eq. (2) proposed by Kramer [11]. 

 
Fig. 3  Example of the use of the adaptive threshold technique. 

 
Fig. 4  Air concentrations with 0.5 m3/s. 
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Fig. 5  Air concentrations with 1.0 m3/s. 

 

 
Fig. 6  Air concentrations with 1.5 m3/s. 

 

From the measurements taken, the Reynolds and 

Weber numbers were obtained for each test, with the 

purpose of corroborating the scale effects. The values 

are presented in Table 1 and it is observed that they are 

in the range of the criteria established earlier.  

In the Figs. 4 to 6, the air content close to the 

template is shown. For this, the results of the 

measurements of the right, left and center margin were 

measured at the points closest to the template (2 mm) 

which are those of the bottom. In addition, the results 
 

Table 1  Values of reynolds and weber.  
Q 

[m3/s] 
Re 
 105 

W0.5 

0.5 2.89 159.73 

1.0 5.77 247.46 

1.5 8.66 313.71 

 

were compared with those obtained with the Kramer 

equation [11]. 

From the measurements of air content, it is observed 

that for the three flows and at 2 mm, there is an air 

concentration of less than 1%, which is below the 

recommended values so that cavitation damage can be 

prevented. However, when observing the values of air 

content at 1 cm in the model, these are between the 2 

and 10% recommended values to prevent cavitation in 

the bottom.  

In addition, according to the measurements and the 

comparison with the calculated value using the 

expression of Kramer [12] it is observed that both 

values are similar, so the use of this expression to 

determine the concentration of air in the template is 

reliable. 
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5. Conclusions 

It is possible to reliably measure the air content in 

large physical models by means of conductivity probes 

and corresponding post-processing with an adaptive 

thresholding technique. The use of the conductivity 

probe in this application is reliable with the added 

benefit that they are also easy to manufacture. 

Additionally, an advantage of the equipment used is 

that it can be deployed in any type of cross-section, 

such as in circular-section tunnels, etc. 

When comparing the measurements made in the 

laboratory with those calculated using the equation 

proposed by Kramer [11] it is observed that the there is 

a reliable correlation in obtaining the air concentration 

at the bottom. The use of this equation to estimate the 

air concentration is thus also recommended in 

prototypes. 

The measurements made in the model show that 

there is a difference between the values at the bottom (2 

mm) and those obtained at 1 cm, so one has to make a 

decision in each case, on the distance from the template 

that is considered representative to predict the possible 

cavitation. In the test case, the distance of 2 mm 

indicates that the air concentrations are in the order of 1% 

or less, whereas the amount of air at 1.0 cm from the 

bottom varies between 10 to 2%. Therefore, no 

cavitation problems were detected in the prototype. 
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