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Abstract: Thermal infrared (TIR) data are collected by orbital sensors in order to analyze targets on the Earth’s surface in a local or 
global scale. The radiance captured by the sensors in the TIR is dependent on two physical quantities: temperature (T) and emissivity 
(ε) of the surface. In this case, Planck’s law, which describes the relation between these variables, leads to an equation without a 
single solution. Many methods have been proposed in the last decades and each technique has a set of restrictions that must be 
observed in order to generate reliable results. In this paper, we present the Cauchy-Schwarz Inequality Temperature Based (CSI-TB) 
algorithm to T and ε retrieval. This new approach allows calculating both the range and the standard deviation of the errors related to 
temperature estimation. Initially, the problem of separating the T and ε from radiance data will be treated as a comparison between 
vectors. The Cauchy-Schwarz inequality (CSI) is applied to sort the spectral similarity between vectors. The vectors are formed by 
radiance data from the sensor and reference data. The reference data are formed by a database (DB) of a given target with spectral 
signatures of radiance measured at different temperatures. Thus, the first estimate for T will be the temperature corresponding to the 
most similar spectrum of the DB, with proportional error to the differences between the temperatures of the DB. In the second step of 
the algorithm, linear regression is applied in the parameters for a 2nd degree polynomial between the results from CSI (ordinate axis) 
and temperatures (abscissa axis). In this case, the final estimate for T will be the abscissa of the vertex of the 2nd degree polynomial 
generated by the regression. The inclusion of this step allows obtaining more accurate estimates for the T when comparing the 
estimates of the first stage. The algorithm was tested in simulated radiance, temperature and emissivity data in which the target of 
interest is the quartz mineral, since it has a known spectral signature, associated with the Si-O bond in the TIR region. The simulated 
sensor was the TIR/ASTER subsystem onboard the EOS-Terra satellite. The results of the simulations obtained performance within 
the theoretical limits predicted by the method. 

 
Key words: thermal infrared, temperature and emissivity retrieval, algorithm development 

 

1. Introduction  

With the development of the urban economy, the 

pursuit of high economic benefits from the limited land 

has become the dominant impetus affecting urban 

spaces in many metropolises.  

Radiation measurements by orbital sensors are 

valuable for the study of the terrestrial environment and 
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its natural and anthropic changes. Most studies are 

carried out from the recording of electromagnetic 

energy between the region of the visible to the 

shortwave infrared, where information of reflectance 

of targets allows its physical and chemical 

characterization. 

Less common, but not least important, the thermal 

infrared region is mainly used for studies of energy 

balance on the Earth’s surface (temperature data), as 

well as an alternative for a spectral characterization and 

composition of targets (emissivity data). 
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In these situations, terrestrial remote sensing works 

with a radiation emitted in the atmospheric windows 

between 8 and 14μm, corrected to the top of the 

atmosphere, in which the emitted radiation of the 

surface is function of its temperature (T) and emissivity 

(ε). However, there is a limitation in the separation of 

these terrestrial variables, since it is an indeterminate 

problem characterized by a nonlinear function [1]. 

For n spectral bands, there are n+1 unknowns 

(spectral emissivity + temperature). 

Several methods were developed in the last decades 

in the attempt of recovering with reliability the 

temperature and emissivity of the terrestrial surface 

from orbital data sensors radiance [2-15]. 

Here we developed a method to retrieve T and ε from 

radiance data providing, previously, the error 

amplitude of T from a target database measured at 

different temperatures. First, the Cauchy-Schwarz 

Inequality (CSI) is used, treating the problem as a 

comparison between radiance vectors from inner 

product operations. One of these vectors is formed by 

data collected by the sensor. The others are composed 

of elements of a data base obtained by controlled 

experiments. In the second part, linear regression is 

applied in the parameters for a second degree 

polynomial between inner products and temperatures. 

This is a new method of separating temperature and 

emissivity that allows calculating the minimum and 

maximum errors of the temperature estimate. 

In order to test the method, pixels were simulated 

from laboratory-collected data of a quartz mineral 

(SiO2) free of impurities and with a known spectral 

signature, associated with the Si-O bond in the thermal 

infrared region (8-14 μm) [16, 17]. These data are free 

of noise and do not have interference from the 

atmosphere. The simulated sensor was the Advanced 

Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), onboard the EOS Terra satellite, 

which has a thermal infrared (TIR) subsystem that 

records data in 5 spectral bands centered at the 

following wavelengths (8.3, 8.6, 9.1, 10.6 and 11.2 μm) 

[18]. 

2. Recovery of the Temperature and 
Emissivity of the Terrestrial Surface 

Recovering T and ε from radiance data from orbital 

sensors is a challenging task, as it is an undetermined 

problem characterized by a non-linear function of these 

two variables [1]. The spectral radiance can be defined 

using the Planck equation (Eq. 1). 

,ߣሺܤ ܶሻ ൌ
భ

ఒఱቆ
మ
ഊିଵቇ

                           (1) 

where B(λ, T) is the spectral radiance reemitted by the 

blackbody (Wm−2sr−1μm−1), T is the surface 

temperature in Kelvin (K), λ is the wavelength (μm), 

C1 is the first radiation constant (3.7415110−16 Wm2 ) 

and C2 is the second radiation constant (1.4387910−2 

mK). 

The emissivity (ε) is defined by the ratio between the 

radiance of a given material R(λ, T) and the radiance of 

a blackbody B(λ, T) under the same wavelength λ and 

the same temperature (T) (Eq. 2). 

,ߣሺߝ ܶሻ ൌ
ோሺఒ,௧ሻ

ሺఒ,்ሻ
                                    (2) 

Since the radiance of a material cannot be greater 

than the radiance of a blackbody, then emissivity is a 

dimensionless parameter between zero and one. 

In this case, to find a relation between T and ε, we 

use the Planck equation (Eq. (1)) and the definition of 

emissivity (Eq. (2)). 

By combining the Eq. (1) and Eq. (2), we have the 

following equation: 

ܴሺߣ, ܶሻ ൌ ,ߣሺߝ ܶሻ
భ

ఒఱቆ
మ
ഊିଵቇ

                        (3) 

The Eq. (3) is a relation between the variables: 

radiance, temperature and emissivity, which results in 

an indeterminate equation, since R(λ, T) is the radiance 

measured by the sensor, two variables must be 

determined (T and ε). Thus, the temperature of a target 

and its emissivity define the infrared energy emitted by 

the object. In the case of terrestrial targets, these two 
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parameters can be measured in the TIR range where the 

dominant radiation is approximately between 3-14 μm 

[19]. 

3. Methodology 

Before applying the method, a spectral library of 

the target of interest must be generated in a controlled 

environment to measure the radiance at different 

temperatures. Let us give preference to equal spacings 

between the target temperatures to compose the DB 

and define this spacing by ∆. In addition, the effect of 

the atmosphere on the radiance data recorded by the 

sensor must be corrected. That is, this procedure must 

precede the application of the algorithm. 

The first part of the method compares sensor data 

with a spectral library using the Cauchy-Schwarz 

inequality1 to identify the DB spectrum closest to the 

sensor data. Consequently, this spectral signature, 

which was measured at a certain temperature, will be 

the first estimate of T for the analyzed pixel. 

Since the DB temperature set is finite, a second step 

is added which uses the first temperature estimate to 

generate a linear regression on the parameters for a 

second degree function between the inner product 

with temperature. The vertex of this function is used 

for the final temperature estimation. With the sensor 

radiance and the estimated temperature, the emissivity 

(ε) can be calculated. 

If the spectral signatures that compose the DB are at 

equally spaced temperatures, then one can calculate 

error amplitudes of the estimated T variable. It should 

be noted that this method is only valid for pixels that 

represent the same target of the spectral library. 

4. Cauchy-Schwarz Inequality Temperature 
Based (CSI-TB) 

Let X = [x1, ... , xn ]
T be the vector with radiance data 

recorded by the sensor with n bands. In this case, X is a 

pixel of dimension n × 1. And the matrix ܣ ൌ ሾܽ,ሿ 

represents the m spectral signatures of DB resampled to 
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a given sensor with n bands. Each line of A refers to the 

spectral signature at a specific temperature, where 

ܮ ൌ ൣܽଵ,ܽଶ,…,ܽ൧ refers to ݈-th line of the array A. 

Thus, the matrix A has dimensions m × n. The 

(Algorithm 1) describes the method in more detail. 
 

Algorithm 1  Temperature and emissivity retrieval 
 

Input: X e A 

Output: T e ߝ 
1: The X vector will be multiplied by the A to generate 

ܺܣ ൌ 
,ଵܮ〉 ܺ〉
⋮

,ܮ〉 ܺ〉
൩    (4) 

Where 〈		, 〉 represents the inner product operation. 

2: Each line ݈ of the vector AX will be normalized 

ܼ ൌ

ۏ
ێ
ێ
ݏܿۍ ቀ

〈భ,〉

‖భ‖‖‖
ቁ

⋮
ݏܿ ቀ

〈,〉

‖‖‖‖
ቁے
ۑ
ۑ
ې
             (5) 

where 0 ≤ 1 ≥ ࢆ, since the input data are all positive. 

3: Select the line ݈௫ of the ࢆ vector that has the closest value 
of one. 

4: Check which is the temperature ሺݐೌೣ
) related to the ݈௫ 

line. This value will be the first estimate for T in a given pixel of 
the image. 

5: Select the following set of points: ( ೌೣషభݐ
, ܼೌೣషభ

), 

( ೌೣݐ
, ܼೌೣ

), ( ೌೣశభݐ
, ܼೌೣశభ

). With these three points, 

regression is applied to a polynomial of the second degree to find 

the parameters ܽ, ܽଵ e ܽଶ related to the function ݕ ൌ ܽ 
ܽଵݔ  ܽଶݔଶ. 

6: Calculate the vertex abscissa ሺݔ௩ሻ:	ݔ௩ ൌ െ
భ
ଶమ

. 

7: If ݔ௩ ∈ ሾݐ,  are the lowest and	ೞೠݐ  and	ݐ ೞೠሿ, whereݐ

the highest temperature of the DB respectively, then T = ݔ௩. 

Otherwise, T = ݐೌೣ
. 

8: return T. 
9: Calculate the emissivity: 

,ߣሺߝ ܶሻ ൌ ܴሺߣ, ܶሻ
ఒఱగ൬

మ
ഊିଵ൰

భ
   (6) 

with the estimated value of the temperature (T) and the radiance 

(R) provided by the sensor for a given band, the emissivity (ߝ) is 

calculated for this band centered at its respective wavelength (ߣ). 

10: return ߝ. 

4.1 Temperature Estimation Error 

The method allows to know the amplitude of the 

errors of the first estimate of T referring to the 

Algorithm 1 — steps 1 to 4. This work will not 

mathematically demonstrate the limits of errors 
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referring to the final estimate of T — steps 5 to 10 of 

the proposed method. However, the simulations 

indicate that the maximum and minimum errors of the 

final estimate are smaller when compared to the first 

estimate (see Table 2). 

The error amplitude of the first estimate of T can be 

represented as a quantization error, since the true 

temperature, TR, should be classified into one of the 

possible temperature values of the DB (TDB). 

The quantizer (QDB(.)) is a function that aims to 

transform the n-th entry TR[n] into a single value of a 

finite set of possibilities [20]. This operation is 

represented as follows: 
ܶோሾ݊ሿ ൌ ܳሺ ோܶሾ݊ሿሻ                              (7) 

and refers to ܶோሾ݊ሿ)  as the n-th quantized sample 

that is equal to some temperature value (TDB) of the 

DB. 

For this analysis, we will consider a uniform 

quantizer that covers a temperature interval [Tmin, Tmax] 

of a random variable T with m intervals. Thus, the 

step size of the quantizer is described as follows: 

Δ ൌ ்ೌೣି்


                          (8) 

The possibility of values for ܶோሾ݊ሿ  is called 

quantized levels and in practice will depend on the 

experiment performed to construct the reference DB. 

In other words, what are the temperature values that 

compose the DB. 

Generally, the quantized sample ܶோሾ݊ሿ  will be 

different from the sample of true values TR[n]. The 

difference between them is the quantization  error, 

defined by 

݁ሾ݊ሿ ൌ ோܶሾ݊ሿ െ ܶோሾ݊ሿ                         (9) 

Samples are rounded to the nearest quantization 

level, in other words, to the most similar spectrum of 

DB, which results in 

െΔ 2  ݁ሾ݊ሿ  ∆ 2⁄⁄                             (10) 

The statistical representation of quantization errors 

is based on the following assumptions: 

(1) The sequence of errors e[n] is a sample of a 

stationary stochastic process; 

(2) The sequence of errors e[n] is not correlated 

with the sequence TR[n]; 

(3) The random variables of this stochastic process 

are not correlated. 

It is reasonable to assume that e[n] is a random 

variable with mean equals to zero and uniform 

distribution between −∆/2 e ∆/2. Therefore, the 

probability density function for the quantized error is 

1/∆, and the variance is 

ଶߪ ൌ  ݁ଶ
∆ ଶ⁄

ି∆ ଶ⁄
ଵ

∆
݀݁ ൌ

∆మ

ଵଶ
                    (11) 

Therefore, the standard deviation is 

ߪ ൌ
∆

ଶ√ଷ
                                (12) 

5. Simulation 

The article deals with an approach of how to recover 

the T from a target. The error in the estimation of T is 

given by the expression (10) and the standard deviation 

of the error by (12). These results are theoretical and 

dependent on certain hypotheses. Thus, the method 

allows to calculate (10) and (12) before applying the 

algorithm to estimate the temperature, since they 

depend solely on the difference between temperatures 

(∆) of a database of spectral signatures of a target. In 

this way, it is clear that the simulations are not limited. 

In fact, they are not necessary, but they serve to show 

that the simulations are in agreement with the 

theoretical results. 

In order to show that the simulations are in 

agreement with the theoretical results proposed in 

Section 4, we used raw data acquired in the laboratory 

to create synthetic data in order to construct a DB and 

to simulate the data recorded by a sensor. The target 

was the quartz mineral, because it has a well-defined 

spectral signature, associated with the Si-O bond in the 

TIR region. The simulated sensor was the TIR/ASTER 

subsystem onboard the EOS-Terra satellite. 

The experiment was developed mainly to determine 

if the error amplitudes of the algorithms are within the 

theoretical limits developed in the Section (4). The 
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simulated sensor data did not suffer interference from 

the atmosphere. 

5.1 Temperature Estimation Error 

To simulate the quartz radiance intercepted by the 

TIR/ASTER sensor, a data set was created for 

temperatures between 16°C and 36°C. To simulate an 

approximately continuous spectrum of the target of 

interest, a linear regression was applied generating 

2001 values of radiance as a function of temperature. In 

this case, the difference between the temperatures is 

0.01°C. The spectral signatures of the radiance were 

resampled to the five bands of the TIR/ASTER 

subsystem. 

As it is written in the Section (3) the atmospheric 

correction must be performed before applying the 

method proposed in this paper. 

5.2 Temperature Estimation Error 

Five databases were constructed. They were 

simulated similarly to the ASTER data, the difference 

lies in the spacing between the temperature values. 

Here, DBs with fixed spacings of 1°C, 2°C, 4°C, 5°C 

and 10°C were simulated. 

According to the description of the Subsection (5.1), 

radiances were simulated for temperatures between 

16°C and 36°C. Thus, the DBs have, respectively, the 

following amounts of elements: 21, 11, 6, 5, and 3 

spectra to compare with the sensor data. 

6. Results 

The analysis of the errors (real value minus the 

estimated value) of the estimates were performed in 

two parts: the first where the Cauchy-Schwarz 

inequality (steps 1 to 4) and the second part in which 

linear regression is applied (steps 5 to 10). 

The Table 1 shows that the errors of the estimates of 

the simulations are in agreement with the theoretical 

results. For, the error amplitude is within the theoretical 

limits for each ∆ spacing of the DB. There was no 

difference between the standard deviation of the 

theoretical error (σe) calculated by Eq. (12) and the 

standard deviation of the error from the application of 

the algorithm. In addition, the negative means indicate 

that the method tends to overestimate the temperature 

values. 

Unlike the first part of the (Algorithm 1) (steps 1 to 4), 

a function to calculate the error amplitude for the 

second part of the algorithm (steps 5 to 10) has not yet 

been developed. But the simulation results show that 

the error limits are smaller when compared to the first 

part results. It can be seen that for ∆ = 1 the amplitude 

of the error was 0.06 and for ∆ = 10 was 4.59, that is, 

they correspond respectively to 6% and 45.9% of the 

theoretical error. The same analysis can be performed 

when we compare the results of the standard deviation, 

which also does not have an established function. For ∆ 

= 1 the value of σe = 0.01 and for ∆ = 10 the value of σe 

= 1.34, which represents 3.4% and 46% of the 

theoretical error respectively. Similarly to the first part 

of the algorithm, the negative means indicate that the 

method tends to overestimate the temperature values. 
 

Table 1  Descriptive statistics of Algorithm errors 1 (steps 1 
to 4) 

 
Error (°C) 

(Real temperature minus estimated temperature) 

∆ Minimum Maximum Range Average σe 

1 -0.50 0.49 0.99 -0.01 0.29

2 -1.02 0.98 2.00 -0.02 0.58

4 -2.08 1.92 4.00 -0.08 1.15

5 -2.62 2.38 5.00 -0.12 1.44

10 -5.50 4.51 10.01 -0.50 2.89
 

Table 2  Descriptive statistics of Algorithm errors 1 (steps 5 
to 10). 

 
Error (°C) 

(Real temperature minus estimated temperature) 

∆ Minimum Maximum Range Average σe 

1 -0.02 0.03 0.06 -0.01 0.01

2 -0.08 0.14 0.22 -0.05 0.04

4 -0.33 0.51 0.84 -0.15 0.20

5 -0.51 0.77 1.28 -0.21 0.33

10 -1.99 2.60 4.59 -0.27 1.34
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7. Discussion and Conclusion 

The paper deals with an approach of how to recover 

the T and ε of a target, knowing previously the 

amplitude of the associated error from a radiance 

database. The estimate and standard deviation of the 

error are associated with the spectral contrast between 

the radiance curves of the specific target measured at 

different temperatures. In this sense, the CSI-DB 

proposed performed within the expected for simulated 

data without atmospheric interference. The 

accuracy/precisions of the estimates are related to the 

size (∆) between the different temperatures at which 

the target was measured. These estimates have errors 

less than ±∆/2. In average, the method tends to 

overestimate the temperature values. The algorithm 

CSI-DB does not restrict the number of sensor 

channels. 

In this paper the quartz signature was used for 

different temperatures for geologic investigation 

purposes in mafic and ultramafic rocks. Meanwhile, 

new spectral libraries from various targets are being 

considered and will be tested in the near future. 
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Appendix A. Cauchy-Schwarz Inequality 

Theorem 1. If V is a vector space over Թ endowed with an 

inner product 〈		, 〉, then for all x,y ∈ V we have 
 

,ݔ〉| |〈ݕ  .‖ݔ‖  (A1)    ‖ݕ‖
 

Therefore, by Theorem (1), results that 
 

െ1 
|〈௫,௬〉|

‖௫‖.‖௬‖
 1	for	all	ݔ, ݕ ∈ V െ ሼ0ሽ  (A2) 

 
  

Thus, there exists a unique angle ߠ ∈ ሾ0,  ሿ satisfyingߨ

ߠݏܿ ൌ
|〈௫,௬〉|

‖௫‖.‖௬‖
     (A3) 

Where ߠ is the angle between the vectors x,y. 
Since the elements of the vector are positive values, then 0 ≤ 

 .1 ≥ ߠݏܿ

 

Appendix B. Regression to Second degree 

polynomial 

According to (21) in the case where it is desired to use a 

second degree polynomial to fit the data ሺݔ,  ሻ we haveݕ

ݕ ൌ ܽ  ܽଵݔ  ܽଶݔଶ            (B1) 
 

Thus, the residue is given by 

ܴଶ ൌ ∑ ሾݕ െ ൫ܽ  ܽଵݔ  ܽଶݔ
ଶ൯ሿ²

ୀଵ         (B2) 

the partial derivatives are 
డሺோమሻ

డబ
ൌ െ2∑ ݕൣ െ ൫ܽ  ܽଵݔ  ܽଶݔ

ଶ൯൧
ୀଵ ൌ 0   (B3) 

డሺோమሻ

డభ
ൌ െ2∑ ݕൣ െ ൫ܽ  ܽଵݔ  ܽଶݔ

ଶ൯൧
ୀଵ ݔ ൌ 0   (B4) 

డሺோమሻ

డమ
ൌ െ2∑ ݕൣ െ ൫ܽ  ܽଵݔ  ܽଶݔ

ଶ൯൧
ୀଵ ݔ

ଶ ൌ 0  (B5) 

these equations lead to 

ܽ݊  ܽଵ ∑ ݔ

ୀଵ  ܽଶ ∑ ݔ

ଶ
ୀଵ ൌ ∑ ݕ


ୀଵ    (B6) 

ܽ ∑ ݔ

ୀଵ  ܽଵ ∑ ݔ

ଶ
ୀଵ  ܽଶ ∑ ݔ

ଷ
ୀଵ ൌ ∑ ݕݔ


ୀଵ   (B7) 

ܽ ∑ ݔ
ଶ

ୀଵ  ܽଵ ∑ ݔ
ଷ

ୀଵ  ܽଶ ∑ ݔ
ସ

ୀଵ ൌ ∑ ݔ
ଶݕ


ୀଵ   (B8) 

 
or in matrix form 

ቨ
݊				 ∑ ݔ 				∑ ݔ

ଶ

∑ ݔ 				∑ ݔ
ଶ 				∑ ݔ

ଷ

∑ ݔ
ଶ 				∑ ݔ

ଷ 				∑ ݔ
ସ
ቩ ඍ
ܽ
ܽଵ
ܽଶ
එ ൌ ቨ

ݕ∑
∑ ݕݔ
∑ ݔ

ଶݕ

ቩ    (B9)  

in matricial notation the Equation (B9), can be rewritten as 
follows 

ܺܽ ൌ  (B10)    ݕ
This matrix equation can be solved numerically, or it can be 
inverted directly, if possible, to obtain the solution vector 

ܽ ൌ ሺ்ܺܺሻିଵ்ܺݕ    (B11) 
 
 

 


