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Abstract: It is widely accepted that different salinity brines injection may increase the oil recovery. However, the mechanisms by 
which low salinity flooding increases oil recovery are not yet fully understood. This work is to run simulation on ECLIPSE 100 
simulator to show the effect of injecting low salinity into a reservoir. A three dimensional synthetic model was created to mimic a real 
reservoir. The effect of low salinity on oil recovery was observed by conducting sensitivity study on; injecting brine salinity, slug 
injection of low salinity, and endpoint saturations. A difference of 22% in oil recovery observed when the low salinity water is injected 
compared to the high salinity water only in the threshold range between 0 kg/m3 to 5 kg/m3. 

Performing slug injection can reduce the requirement for low salinity water and recovers approximately the same percentage of oil. 
This can indeed give better cost saving when opting for low salinity injection.  

The brine option in ECLIPSE 100 indicated to be very sensitive to the saturation endpoint and relative permeability. Thus, it is 
important to be aware of this during simulation of such augmented waterflooding, and input from experimental data is needed for 
accurate simulations. 
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1. Introduction  

The concept of injecting low-salinity water (LoSal) 

into the oil reservoir is not a new topic. The first 

observation of the LoSal effect on oil recovery goes 

back to Martin (1957) and Bernard (1967), who 

demonstrated that the injection of fresh water can 

improve the macroscopic sweep efficiency in 

sandstone containing clay due to mobilization of fine 

clay particles [1, 2]. However, this work did not draw 

the attention of the oil industries. Three decades later a 

new phase of research activities initiated to optimize 

the composition of injected water during waterflooding 

and its effect on oil recovery enhancement. The 

literature on low salinity waterflooding has 

increasingly become rich in last few year [3-13] are 

among the numerous studies which have been 

                                                           
Corresponding author: Jagar Ali, Researcher, research 

areas/interests: reservoir simulation, history matching, 
petrophysics, reservoir characterization. E-mail: 
jagar.ali@soran.edu.iq. 

published during last 10-15 years. In these studies 

many different microscopic mechanisms behind low 

salinity waterflooding process have been proposed. 

However, there is not an agreement on the primary 

mechanisms that work to enhance oil recovery.   

Tang and Morrow in their experiments on LoSal 

waterflooding identified the movement of fine clay 

particles. According to their understanding when 

contacted with low salinity brine, clay particles detach 

from the pore walls, as a result an intermediate wet 

phase becomes unstable and attains the ability to detach 

from the surface of the rock and expose the water wet. 

They also reported that when the salinity of the injected 

brine is less than 1550 TDS this causes a reduction in 

permeability [5]. However, in the experiment 

conducted by Lager et al. seems to have witnessed the 

low salinity effect even without fines migration or 

reduction in permeability [10].  

The studies [8, 10-15] on LoSal waterflooding have 

demonstrated experimentally the low salinity effect on 

the pH value, claiming an increase of pH. This rise in 
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5. Conclusions 

Sensitivity studies of LoSal water-flooding on a 

synthetic model were carried out using ECLIPSE 100. 

The obtained results are based on the properties used in 

the simulation model, clearly showed a significant 

salinity dependence. An increase in oil recovery can be 

observed in conjunction with a reduction in the salinity 

of injected brine, where only in the threshold range 

between 0 kg/m3 (0.0 ppm) to 5 kg/m3 (5000 ppm). 

Furthermore, continuous LoSal injection gives higher 

oil recovery. However, when economic aspects were 

considered, slug injection can reduce the requirement 

for LS water and approximately recovers, the same 

percentage of oil. Moreover, the simulation results, 

also, indicate that the potential recovery in low salinity 

waterflooding was very sensitive to endpoint saturation. 

Therefore, it is important to be aware of such input data 

in order to obtain accurate simulation results. 
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