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Abstract: In the planned process biogas will be cleaned and subsequently transformed into liquid biomethane (LBM) and solid carbon 
dioxide (dry ice). Thus biogas is transformed in an energy rich storable and easily transportable energy carrier.  

An important precondition for the process is an individually adapted gas cleaning system, which separates impurities (e.g., NH3, H2O, 
H2S etc.) from the biogas. Subsequently the pre-cleaned biogas (now consisting mainly of CO2 and CH4) is fed into the liquefaction unit. 
Core pieces of this system are two heat exchangers connected in series with operating temperatures of about 200 and 120 Kelvin. The 
first heat exchanger works as a precooler and might also be used as a back-up for freezing out impurities. Triggered by the deep 
temperatures reached in the second heat-exchanger, the CO2 flocculates. A purity of 99.9% CH4 in the liquid phase could be guaranteed, 
as only CH4 has its dew-point at the operating temperature of 111 Kelvin. The low pressure and the absence of toxic chemicals are 
further benefits of the specific process.  

A high-quality cryogenic and liquid energy source arises by cutting off CO2 and by the liquefaction of CH4. This energy source has 
an upper heating value of 5.87 kWh/l at a temperature of 111 K (biogas: 0.0055 kWh/l at 300 K). By increasing the volumetric energy 
by the factor of 1000 (compared to biogas), transportation to highly efficient energy plants becomes reasonable.  

Goals of the project are to proof the feasibility of a decentralized long-term storage of large energy amounts, to show alternative 
ways in using transformed biogas and an efficient usage of the energy content of the raw gas. Additional marketing possibilities of dry 
ice and LBM could ensure an economical operation outside the German EEG (Renewable energies act). 
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1. Introduction  

About 25.8% of Germany’s electrical power supply 

originates from renewable energies [1]. The major part 

of this energy derives from fluctuating sources like 

wind and solar power plants. For the future energy 

demand, it is desirable to store this seasonally 
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produced energy from summer for winter. One 

possible solution is liquid biomethane derived from 

biogas plants. The liquefaction increases the energy 

density of biogas by the factor of 1000 (Fig. 1) and 

creates a fully suitable energy carrier [2]. 

In the planned process, biogas will be transformed 

into liquid biomethane (LBM) and solid carbon dioxide 

(dry ice). By cooling down to -162°C, it is possible to 

obtain one liter of LBM and about 1 kg of dry ice from 
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one cubic meter of biogas (Fig. 1). Dry ice can only be 

obtained at low pressures up to about 0.5 MPa; 

however the gas conditioning works best with 

atmospheric pressure.  

 
Fig. 1  Volumetric Energy Density of Biogas and Liquefied 
Biomethane (LBM) [2] 
 

It is necessary to find a constant working and 

cost-effective process. The research focus is on the 

heat exchanger, especially its working parameters and 

conditions (i.e., surface, temperatures or pressure). 

Trace gases such as ammoniac (NH3) or hydrogen 

sulfide (H2S) may have negative effects on the cooling 

process and the energy efficiency. To avoid major 

efforts it is necessary to remove or reduce trace gases 

within the biogas in advance. Furthermore, it is of great 

importance to establish an adapted and reliable gas 

cleaning process, because high purity without 

undesirable trace gases is a requirement for a 

successful marketing of the dry ice. This must be done 

in accordance with the general process requirements as 

well as with individual parameters as the feed materials 

used in the biogas plant. An optimization of the 

operational parameters will lead to cost saving in the 

gas cleaning process. 

1.1 Liquefied Biomethane (LBM) 

LBM resembles liquefied natural gas (LNG). LBM 

and LNG feature a similar composition of components 

but reaching a higher purity of LBM (LBM: > 99% 

CH4 vs. LNG: > 75% CH4 [3]). Its high purity enables 

the use for industrial raw materials and for chemical 

processes. Due to the reduced volume, LBM is a 

flexible, portable, and long term storable energy carrier. 

The transportation of LNG and LBM is state of the art. 

E.g., easily transporting of about 14,000 liters of LNG 

and LBM over long distances by truck is possible. 

LNG and LBM can be stored without significant 

evaporation losses. For example: In the United States 

more than 250 LNG/LBM gas stations retain this fuel 

every day [4]. This common know-how can be used 

within this study. Due to the good transportability and 

storage properties, following applications are of 

interest: 

(1) LBM can be used as a feedstock in highly 

efficient gas and steam power plants and as peak 

electricity coverage in gas power plants. Thus, biogas 

can contribute extensively to the demand electricity 

production by means of renewable energies. 

(2) The upper heating value of LBM is 

approximately 5.8 kWh/l [5]. Therefore, LBM can be 

used as a substitute for fossil fuels. In the USA over 

10,000 buses, vans, garbage trucks and highway 

tractors are running on LNG and LBM already [4]. 

Compared to compressed natural gas (CNG) the range 

can be doubled. Furthermore the emissions compared 

to conventional diesel engines can be significantly 

reduced: As a matter of fact, particulate material can be 

reduced by 100%. E.g., the automotive companies 

“Mercedes” and “Volvo” already advertised explicitly 

the use of LBM within their heavy traffic vehicles [6]. 

(3) Farmers are able to produce LBM for their own 

consumption. 

A main aim of the study is to develop a process that 

is cost-efficient even for small sized biogas plants. Due 

to a close meshed gas grid in Central Europe, larger 

plants with a gas production rate of more than 250-500 

m3/h often have the possibility to feed their biogas in 

the natural gas grid. For small plants the established 

gas conditioning technologies are far too expensive. 

Especially for small sized plants with modular 

construction, LBM is suitable, which should be 

expandable in modular construction. A treatment plant 

may convert about 25 m3 biogas per hour, which is 

equivalent to an electrical output of 50 kWel. The 

limiting factor of the maximum flow rate is the 

performance of the cryocooler.  
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in the third step: CO2 is specifically flocculated from 

the gas stream by a further reduction of the temperature, 

accomplished by another heat exchanger. This heat 

exchanger is the core of the purification system. Dry 

ice can be removed at the base of the heat exchanger 

setup. 

The remaining pure methane has to be liquefied in 

step four at a temperature of -150°C: This liquefaction 

unit is a standard component. A partial flow of the 

liquefied CH4 is returned to the second heat exchanger. 

By evaporation of the CH4, enough energy is provided 

for the CO2 to freeze out. Together with the purified 

CH4, the evaporated CH4 is liquefied again. This is also 

known as boil of gas, boil of chiller, or boil of cooling 

machine. With the liquid methane cooling a stable 

process with constant process conditions is guaranteed. 

3. Challenges and Difficulties 

3.1 Gas Cleaning 

Depending on the used substrate, an individual gas 

cleaning process is essential for a stable process, due to 

different trace gas contents. On one hand, impurities 

can freeze on the surface of the heat exchanger. On the 

other hand, they can lead to a degradation of the energy 

balance due to longer residence times in the process.  

3.2 Quality of Dry Ice 

A main challenge for the gas cleaning process is the 

dry ice quality. Only if the requirements of the food 

industry [7] can be fulfilled, a successful marketing of 

the dry ice is possible. Due to the intersection point of 

the vapour pressure curves of CO2 and H2S, even 

smallest remaining amounts of H2S in the cleaned gas 

will be integrated into the dry ice during the cooling 

process. As H2S is highly toxic and its human odor 

threshold is very low [9], the gas cleaning process must 

lead to a nearly total separation of H2S.  

3.3 Separation of Carbon Dioxide and Methane 

CO2 resublimates by cooling down below 

temperatures of -78.5°C. The heat exchanger for 

resublimation is called two-phase heat exchanger and 

works from gaseous to solid state. Following scenarios 

can occur: The dry ice falls to the bottom and can be 

removed or the CO2 freezes inside of the heat 

exchanger, which would lead to process termination.  

3.4 Energy Balancing 

In the laboratory plant, thermal losses should be as 

low as possible. Therefore, the system isolation could 

do by a high vacuum surrounding the freezing unit. 

High vacuum means a pressure of < 10-10 MPa. The 

vacuum must remain constant during the experimental 

period. Thus the energy balances reveal representative 

results. 

3.5 Low Temperatures 

Methane liquefies at a temperature of about -162°C. 

This temperature is not available in common system 

technologies of biogas plants. Therefore, special 

cryogenic techniques and materials are needed to 

enable a stable process with such low temperatures at 

depressurized working conditions. 

4. Results and Discussion 

As described above, a reliable removal and detection 

of H2S and NH3 is important. The challenge is here that 

the H2S measurement methodologies for a range below 

one ppm are difficult to handle, especially, if 

online-results are required. It turned out that a 

combination of direct analytical methods (Dräger 

tubes and electro-chemical sensor) combined with 

offline-measurements (gas chromatography) allow a 

reliable data recording. Therefore, a mutual validation 

of H2S analysis methods is possible. For gas 

chromatographic analysis, the dried gas samples were 

stored inside aluminium cans. Sampling and 

processing requires cautious handling and are not 

suitable for the daily routine on biogas plants. 

For both trace gases, H2S and NH3, the complete 

removal via activated carbon is possible, but it is hard 

to estimate the breakthrough of the columns: An online 
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